Home / Biochemistry / Effects of thiamine, pyridoxine and biotin on blood glucose concentration and renal function parameters of alloxan-induced diabetic rats

Effects of thiamine, pyridoxine and biotin on blood glucose concentration and renal function parameters of alloxan-induced diabetic rats

 

Table Of Contents


Chapter ONE

1.1 Introduction
1.2 Background of Study
1.3 Problem Statement
1.4 Objectives of Study
1.5 Limitations of Study
1.6 Scope of Study
1.7 Significance of Study
1.8 Structure of the Research
1.9 Definition of Terms

Chapter TWO

2.1 Overview of Thiamine
2.2 Role of Thiamine in Glucose Metabolism
2.3 Effects of Thiamine Deficiency
2.4 Overview of Pyridoxine
2.5 Role of Pyridoxine in Diabetes Management
2.6 Effects of Pyridoxine Supplementation
2.7 Overview of Biotin
2.8 Role of Biotin in Glucose Regulation
2.9 Effects of Biotin Deficiency
2.10 Comparative Analysis of Thiamine, Pyridoxine, and Biotin

Chapter THREE

3.1 Research Design and Methodology
3.2 Selection of Study Sample
3.3 Data Collection Methods
3.4 Data Analysis Techniques
3.5 Ethical Considerations
3.6 Research Variables
3.7 Instrumentation
3.8 Data Interpretation and Validation

Chapter FOUR

4.1 Overview of Findings
4.2 Effects of Thiamine on Blood Glucose Concentration
4.3 Effects of Thiamine on Renal Function Parameters
4.4 Effects of Pyridoxine on Blood Glucose Concentration
4.5 Effects of Pyridoxine on Renal Function Parameters
4.6 Effects of Biotin on Blood Glucose Concentration
4.7 Effects of Biotin on Renal Function Parameters
4.8 Comparative Analysis of Thiamine, Pyridoxine, and Biotin Effects

Chapter FIVE

5.1 Summary of Findings
5.2 Conclusion
5.3 Implications of the Study
5.4 Recommendations for Future Research
5.5 Contribution to Knowledge

Project Abstract

The aim of this study was to investigate the effects of thiamine, pyridoxine and biotin on the concentrations of blood glucose, serum electrolytes and renal functions of alloxan-induced diabetic rats. A total of twenty seven (27) adult male albino rats of Wistar strain weighing between 160-200 g were used for the study. Twenty four (24) of the animals were rendered diabetic by a single and freshly prepared alloxan monohydrate dissolved in 0.9% ice cold normal saline solution and injected intraperitoneally at a dose of 100 mg/kg body weight. Forty eight (48) hours after confirmation of experimental diabetes, the rats were randomly divided into nine (9) experimental groups of three (3) rats each. Group 1 served as the normal control while Group 2 served as the diabetic control (diabetic untreated). In group 3 (standard control), metformin was used as a reference standard drug at a dose of 100 mg/kg body weight. Group 4 (diabetic rats treated with 25 mg/kg body weight of thiamine), Group 5 (diabetic rats treated with 25 mg/kg body weight of pyridoxine), Group 6 (diabetic rats treated with 0.5 mg/kg body weight of biotin). Group 7 (diabetic rats treated with 100 mg/kg of metformin and 25 mg/kg of thiamine), Group 8 (diabetic rats treated with 100 mg/kg of metformin and 25 mg/kg of pyridoxine) and Group 9 (diabetic rats treated with 100 mg/kg of metformin and 0.5 mg/kg of biotin). Blood glucose concentrations, serum electrolytes and renal function parameters were analysed. The results obtained showed that oral administration of thiamine, pyridoxine and biotin, after the seventh day of treatment significantly (p < 0.05) lowered blood glucose concentrations when compared to the values obtained for Group 2 (untreated) rats. Co-administration of thiamine and biotin with the metformin however, was observed to be more efficacious as they significantly lowered blood glucose concentration when compared to the values obtained for groups 2, 4 and 6. Sodium, chloride and bicarbonate concentrations in groups 4 rand 9 were observed to be significantly (p < 0.05) lower than the value obtained for the untreated group, while potassium ion concentration in these groups were significantly (p < 0.05) higher than the value obtained for group 2. Groups 5 and 8 registered significantly (p < 0.05) lower concentrations of sodium and chloride ions and non-significantly (p > 0.05) lower concentrations of potassium and bicarbonate ions when compared to the values obtained for the untreated group 2 animals. Sodium, chloride and bicarbonate concentrations in groups 6 and 9 rats were observed to be significantly lower than the values obtained for the untreated group. However, the decrease in potassium concentration of group 6 was non-significantly (p > 0.05) lower than the values obtained for group 2. Urea and blood urea nitrogen (BUN) concentrations of all the groups treated with thiamine, pyridoxine and biotin, and those which received co-administration of the vitamins and metformin were observed to be significantly (p < 0.05) lower than the values obtained for the diabetic untreated group 2 rats. Uric acid concentrations of groups 5 and 6 were observed to be non-significantly (p > 0.05) lower than the value obtained for group 2. The result also indicated significantly (p < 0.05) lower concentrations of creatinine in all the treated groups when compared to the values obtained for the untreated group 2 animals. Conclusively, this study showed that thiamine, and biotin decreased blood glucose concentration, and to a large extent, improves electrolyte imbalance and renal functions of diabetic animals. The roles of pyridoxine, thiamine and biotin in this study prove their usefulness in blood glucose control; hence these vitamins can be used as adjuvant with standard anti-diabetic drugs for improving glycaemic control, electrolyte imbalance and renal functions of diabetics.

Project Overview

Blazingprojects Mobile App

📚 Over 50,000 Project Materials
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Software coding and Machine construction
🎓 Postgraduate/Undergraduate Research works
📥 Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Biochemistry. 3 min read

Exploring the Role of MicroRNAs in Cancer Progression and Therapeutic Resistance...

The project titled "Exploring the Role of MicroRNAs in Cancer Progression and Therapeutic Resistance" aims to investigate the intricate involvement of...

BP
Blazingprojects
Read more →
Biochemistry. 2 min read

Exploring the Role of MicroRNAs in Cancer Development and Progression...

The project topic, "Exploring the Role of MicroRNAs in Cancer Development and Progression," focuses on investigating the intricate involvement of micr...

BP
Blazingprojects
Read more →
Biochemistry. 4 min read

Exploring the Role of MicroRNAs in Cancer Progression and Therapeutic Potential...

The project topic, "Exploring the Role of MicroRNAs in Cancer Progression and Therapeutic Potential," delves into the intricate world of microRNAs and...

BP
Blazingprojects
Read more →
Biochemistry. 4 min read

Investigating the role of microRNAs in regulating gene expression in cancer cells....

The project titled "Investigating the role of microRNAs in regulating gene expression in cancer cells" aims to delve into the intricate mechanisms by ...

BP
Blazingprojects
Read more →
Biochemistry. 4 min read

Exploring the Role of Epigenetics in Cancer Development and Therapeutic Approaches...

The project titled "Exploring the Role of Epigenetics in Cancer Development and Therapeutic Approaches" aims to investigate the intricate relationship...

BP
Blazingprojects
Read more →
Biochemistry. 4 min read

Identification and Characterization of Novel Enzymes Involved in Plant Secondary Met...

The project on "Identification and Characterization of Novel Enzymes Involved in Plant Secondary Metabolite Biosynthesis" aims to explore the intricat...

BP
Blazingprojects
Read more →
Biochemistry. 4 min read

Exploring the Role of Gut Microbiota in Human Health and Disease...

The project topic, "Exploring the Role of Gut Microbiota in Human Health and Disease," delves into the intricate relationship between gut microbiota a...

BP
Blazingprojects
Read more →
Biochemistry. 2 min read

Investigating the Effects of Different pH Levels on Enzyme Activity in Biological Sy...

The project topic, "Investigating the Effects of Different pH Levels on Enzyme Activity in Biological Systems," focuses on exploring how varying pH le...

BP
Blazingprojects
Read more →
Biochemistry. 4 min read

Investigating the role of epigenetic modifications in cancer development and progres...

The project "Investigating the role of epigenetic modifications in cancer development and progression" aims to explore the intricate relationship betw...

BP
Blazingprojects
Read more →
WhatsApp Click here to chat with us