Home / Biochemistry / Effect of alkaline steep and air-rest cycle on the development of sorghum peroxidase activity during malting

Effect of alkaline steep and air-rest cycle on the development of sorghum peroxidase activity during malting

 

Table Of Contents


Chapter ONE

1.1 Introduction
1.2 Background of Study
1.3 Problem Statement
1.4 Objective of Study
1.5 Limitation of Study
1.6 Scope of Study
1.7 Significance of Study
1.8 Structure of the Research
1.9 Definition of Terms

Chapter TWO

2.1 Overview of Literature Review
2.2 Conceptual Framework
2.3 Historical Perspectives
2.4 Theoretical Framework
2.5 Empirical Studies
2.6 Current Trends
2.7 Critical Analysis
2.8 Research Gaps
2.9 Conceptual Connections
2.10 Summary of Literature Review

Chapter THREE

3.1 Research Methodology Overview
3.2 Research Design
3.3 Sampling Techniques
3.4 Data Collection Methods
3.5 Data Analysis Procedures
3.6 Research Ethics
3.7 Validity and Reliability
3.8 Limitations of Methodology

Chapter FOUR

4.1 Overview of Findings
4.2 Presentation of Data
4.3 Analysis of Results
4.4 Interpretation of Results
4.5 Comparison with Literature
4.6 Discussion on Key Findings
4.7 Implications of Findings
4.8 Recommendations for Future Research

Chapter FIVE

5.1 Summary of Research
5.2 Conclusions
5.3 Contributions to Knowledge
5.4 Practical Implications
5.5 Recommendations for Practice
5.6 Areas for Future Research

Project Abstract

The effect of alkaline steep and air-rest cycle on the development of peroxidase activity during malting was investigated in sorghum variety, KSV8. Preliminary experiment showed that alkaline steep (test) and the distilled water steep (control) had germinative energy of 92± 2.87 % and 89± 0.57 % respectively. In regime II (sorghum grains steeped in distilled water for 24h), both the test experiment and the control had germinative energy of 95± 1.41 %. Germignative capacity was high in both regimes. The two regimes were not water sensitive, however malting loss were high in alkaline (20.1± 0.93 %) and in distilled water steep (20.0± 1.28 %).Malting loss for distilled water in regime II (sorghum grains steeped in distilled water for 24h) was 5.6± 1.28 % and it is relatively comparable to that of barley. Malting loss was also high in distilled water steep (control) (15.84± 0.19 %). From the results, there was an appreciable increase in peroxidase activity from day 1 through day 3 of germination for distilled water steep in regime I (control) when compared to the test with regression in peroxidase activity. There was a positive gradual increase in peroxidase activity influence by air-rest cycle from day 1 through day 3 in regime II (distilled water steep for 24h). At the end of kilning at 60 ͦ C for 7 h, peroxidase activity dropped sharply in both regimes. Consequently, the introduction of air-rest cycle as malting condition will be beneficiary to brewers. It reduces malting loss associated with sorghum beers, increases the germinative energy and the defensive role of peroxidase against lipid peroxidation during malting. Conversely, the alkaline steep with final warm steep had an inhibitory effect on the development of peroxidase during malting.

Project Overview

Blazingprojects Mobile App

📚 Over 50,000 Project Materials
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Software coding and Machine construction
🎓 Postgraduate/Undergraduate Research works
📥 Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Biochemistry. 3 min read

Exploring the Role of MicroRNAs in Cancer Progression and Therapeutic Resistance...

The project titled "Exploring the Role of MicroRNAs in Cancer Progression and Therapeutic Resistance" aims to investigate the intricate involvement of...

BP
Blazingprojects
Read more →
Biochemistry. 3 min read

Exploring the Role of MicroRNAs in Cancer Development and Progression...

The project topic, "Exploring the Role of MicroRNAs in Cancer Development and Progression," focuses on investigating the intricate involvement of micr...

BP
Blazingprojects
Read more →
Biochemistry. 2 min read

Exploring the Role of MicroRNAs in Cancer Progression and Therapeutic Potential...

The project topic, "Exploring the Role of MicroRNAs in Cancer Progression and Therapeutic Potential," delves into the intricate world of microRNAs and...

BP
Blazingprojects
Read more →
Biochemistry. 2 min read

Investigating the role of microRNAs in regulating gene expression in cancer cells....

The project titled "Investigating the role of microRNAs in regulating gene expression in cancer cells" aims to delve into the intricate mechanisms by ...

BP
Blazingprojects
Read more →
Biochemistry. 2 min read

Exploring the Role of Epigenetics in Cancer Development and Therapeutic Approaches...

The project titled "Exploring the Role of Epigenetics in Cancer Development and Therapeutic Approaches" aims to investigate the intricate relationship...

BP
Blazingprojects
Read more →
Biochemistry. 3 min read

Identification and Characterization of Novel Enzymes Involved in Plant Secondary Met...

The project on "Identification and Characterization of Novel Enzymes Involved in Plant Secondary Metabolite Biosynthesis" aims to explore the intricat...

BP
Blazingprojects
Read more →
Biochemistry. 2 min read

Exploring the Role of Gut Microbiota in Human Health and Disease...

The project topic, "Exploring the Role of Gut Microbiota in Human Health and Disease," delves into the intricate relationship between gut microbiota a...

BP
Blazingprojects
Read more →
Biochemistry. 2 min read

Investigating the Effects of Different pH Levels on Enzyme Activity in Biological Sy...

The project topic, "Investigating the Effects of Different pH Levels on Enzyme Activity in Biological Systems," focuses on exploring how varying pH le...

BP
Blazingprojects
Read more →
Biochemistry. 4 min read

Investigating the role of epigenetic modifications in cancer development and progres...

The project "Investigating the role of epigenetic modifications in cancer development and progression" aims to explore the intricate relationship betw...

BP
Blazingprojects
Read more →
WhatsApp Click here to chat with us