Home / Biochemistry / AMELIORATING ROLE OF N.P.K. FERTILIZER ON THE TOXIC EFFECTS OF Ni ON (SORGHUM) ROOT ANTIOXIDANT ENZYMES1

AMELIORATING ROLE OF N.P.K. FERTILIZER ON THE TOXIC EFFECTS OF Ni ON (SORGHUM) ROOT ANTIOXIDANT ENZYMES1

 

Table Of Contents


Chapter ONE

1.1 Introduction
1.2 Background of Study
1.3 Problem Statement
1.4 Objective of Study
1.5 Limitation of Study
1.6 Scope of Study
1.7 Significance of Study
1.8 Structure of the Research
1.9 Definition of Terms

Chapter TWO

2.1 Overview of Antioxidant Enzymes
2.2 Role of N.P.K. Fertilizer in Plant Growth
2.3 Nickel Toxicity in Plants
2.4 Interactions between N.P.K. Fertilizer and Nickel
2.5 Effects of N.P.K. Fertilizer on Antioxidant Enzymes
2.6 Previous Studies on N.P.K. Fertilizer and Nickel Toxicity
2.7 Mechanisms of Action of Antioxidant Enzymes
2.8 Importance of Antioxidant Enzymes in Plants
2.9 Factors Influencing Antioxidant Enzyme Activity
2.10 Current Trends in Plant Nutrition Research

Chapter THREE

3.1 Research Design and Methodology
3.2 Selection of Study Area
3.3 Sampling Techniques
3.4 Data Collection Methods
3.5 Experimental Setup
3.6 Data Analysis Procedures
3.7 Quality Control Measures
3.8 Ethical Considerations

Chapter FOUR

4.1 Overview of Research Findings
4.2 Effects of N.P.K. Fertilizer on Nickel Toxicity
4.3 Antioxidant Enzyme Activity in Response to N.P.K. Fertilizer
4.4 Comparison with Previous Studies
4.5 Interpretation of Results
4.6 Discussion on Mechanisms of Action
4.7 Implications for Agriculture
4.8 Recommendations for Future Research

Chapter FIVE

5.1 Summary of Findings
5.2 Conclusions
5.3 Contribution to Knowledge
5.4 Practical Applications
5.5 Limitations of the Study
5.6 Suggestions for Further Research

Thesis Abstract

This study investigated the activities of superoxide dismutase (SOD), catalase (CAT), glutothione peroxidase (GP) and the level of malondialdehyde (MDA) in the root of sorghum grown in soils contaminated with 30ppm nickel, 30ppm nickel +20ppm fertilizer and 30ppm nickel + 40ppm fertilizer. Sixty sorghum seeds were germinated in these contaminated soils and were harvested after 2 weeks, 3 weeks, and 4 weeks of planting. Treatment of the plants with 30ppm nickel significantly increased (P < 0.05) the activities of SOD and the level of MDA in the roots compared with the controls. Also, the treatment significantly decreased (P < 0.05) the activities of CAT and GP in the roots compared with controls.The study also revealed a significant decrease (P < 0.05) in the activities of SOD and the level of MDA in plants grown in 30ppm Ni + 20ppm NPK fertilizer and 30ppm Ni + 40ppm NPK fertilizer respectively compared with those grown in 30ppm Ni concentration. These results show that 30ppm Nickel is toxic to sorghum roots for it increases significantly the production of reactive oxygen species but decreases significantly the excretion of reactive oxygen species. This is due to significant increase in the activity of SOD but significant decrease in the activities of CAT and GP. These results also showed that 30ppm Nickel damaged sorghum roots by significantly increasing lipid peroxidation and the levels of MDA. In addition, the results revealed that 20ppm and 40ppm NPK fertilizer had ameliorating effect on the toxicity caused by 30ppm nickel.

Thesis Overview

INTRODUCTIONTrace metals are redistributed in environment by fossil fuel combustion. This release can be expected to increase soil levels of trace elements such as Ni2+ resulting in a concomitant increase in the concentration of Ni2+ in plants and possibly in the food chain (Dominic et al, 1978). Nickel (Ni) is an essential micronutrient for plants since it is the active centre of the enzyme urease required for nitrogen metabolism in higher plants (Yan et al, 2008). Nickel deficiencies lead to reduced urease activity in tissue cultures of sorghum, rice and tobacco and in excessive accumulation of urea and toxic damage to the leaves of leguminous plants such as sorghum (Peter and Andre, 1986). However, excess Ni is known to be toxic and many studies have been conducted concerning Ni toxicity of various plant species. The most common symptoms of nickel toxicity in plants are inhibition of growth, photosynthesis, mineral nutrition, sugar transport and water relations (Seregin and Kozhevnikova, 2006). Heavy metal affects plants in two ways. First, it alters reaction rates and influences the kinetic properties of enzymes leading to changes in plant metabolism (Yan et al, 2008). Second, excessive heavy metals lead to oxidant stress. During the period of metal treatment, plants develop different resistance mechanisms to avoid or tolerate metal stress, including the changes of lipid composition, enzyme activity, sugar or amino acid contents, and the level of soluble proteins and gene expressions. These adaptations entail qualitative and/or quantitative advantage, and affect plant existence (Schutzendubel and Polle, 2002). It is known that excessive heavy metal exposure may increase the generation of reactive oxygen species (ROS) in plants, and oxidative stress would arise if the balance between ROS generation and removal were broken. Oxidative stress is a part of general stress that arises when an organism experiences different external or internal factors changing its homeostasis. In response, an organism either aims to maintain the previous status by activation of corresponding protective mechanisms or goes to a new stable state (Mittler, 2002). In several plants, Ni has been shown to induce changes in the activity of ROS - scavenging enzymes, including SOD catalase and glutathione peroxidase (Yan et al, 2008).The aim of this study is to investigate the effects of nickel on the activities of sorghum root antioxidant enzymes and also monitor the ameliorating effects of N.P.K. Fertilizer.

Blazingprojects Mobile App

📚 Over 50,000 Research Thesis
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Thesis-to-Journal Publication
🎓 Undergraduate/Postgraduate Thesis
📥 Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Biochemistry. 3 min read

Exploring the Role of Gut Microbiota in Human Health and Disease...

The project titled "Exploring the Role of Gut Microbiota in Human Health and Disease" aims to investigate the intricate relationship between gut micro...

BP
Blazingprojects
Read more →
Biochemistry. 3 min read

Investigating the role of microRNAs in regulating gene expression in cancer cells....

The project "Investigating the role of microRNAs in regulating gene expression in cancer cells" aims to delve into the intricate mechanisms by which m...

BP
Blazingprojects
Read more →
Biochemistry. 4 min read

Exploring the Role of Epigenetics in Cancer Development and Treatment...

The project titled "Exploring the Role of Epigenetics in Cancer Development and Treatment" focuses on investigating the intricate relationship between...

BP
Blazingprojects
Read more →
Biochemistry. 3 min read

Analysis of the role of microRNAs in cancer progression...

The project titled "Analysis of the role of microRNAs in cancer progression" aims to investigate the intricate role of microRNAs in the progression of...

BP
Blazingprojects
Read more →
Biochemistry. 2 min read

Investigating the role of microRNAs in regulating gene expression in cancer cells....

**Research Overview: Investigating the Role of microRNAs in Regulating Gene Expression in Cancer Cells** Cancer is a complex disease characterized by uncontrol...

BP
Blazingprojects
Read more →
Biochemistry. 4 min read

Exploring the role of microRNAs in regulating gene expression in cancer cells...

The project titled "Exploring the role of microRNAs in regulating gene expression in cancer cells" aims to investigate the intricate mechanisms by whi...

BP
Blazingprojects
Read more →
Biochemistry. 3 min read

Exploring the Role of MicroRNAs in Cancer Progression: Mechanisms and Therapeutic Po...

The project titled "Exploring the Role of MicroRNAs in Cancer Progression: Mechanisms and Therapeutic Potential" aims to investigate the intricate inv...

BP
Blazingprojects
Read more →
Biochemistry. 4 min read

Exploring the role of microRNAs in cancer progression and potential therapeutic appl...

The project titled "Exploring the role of microRNAs in cancer progression and potential therapeutic applications" aims to investigate the intricate in...

BP
Blazingprojects
Read more →
Biochemistry. 2 min read

Exploring the role of gut microbiota in metabolic diseases...

The project titled "Exploring the role of gut microbiota in metabolic diseases" aims to investigate the intricate relationship between gut microbiota ...

BP
Blazingprojects
Read more →
WhatsApp Click here to chat with us