Home / Mechanical engineering / STAND ALONE 2KVA PV GENERATOR

STAND ALONE 2KVA PV GENERATOR

 

Table Of Contents


<p>Title page &nbsp; — &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – i &nbsp; <br><br>Declaration — &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -ii<br><br>Approval page — – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -iii<br><br>Dedication — &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -iv<br><br>Acknowledgement — &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -v &nbsp; <br><br>Table of content — &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -vi &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Abstract — – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -vii<br></p>

Project Abstract

Abstract
The Stand Alone 2kVA PV Generator project focuses on the design and implementation of a standalone photovoltaic (PV) system with a 2kVA capacity. The system is intended to provide off-grid power supply to remote locations or areas with unreliable grid electricity. The project involves the selection of appropriate PV panels, batteries, charge controllers, inverters, and other necessary components to build a reliable and efficient standalone power generation system. The project includes a detailed analysis of the power requirements of typical off-grid applications to determine the optimal capacity of the PV generator. The system design considers factors such as peak power demand, energy storage requirements, available sunlight hours, and system efficiency to ensure reliable and uninterrupted power supply. The PV generator will be designed to maximize energy capture from the sun and optimize energy storage for use during periods of low sunlight. The selection of high-quality components and efficient system design will be crucial to the overall performance and reliability of the standalone PV system. The project will also focus on the implementation of a robust monitoring and control system to ensure the efficient operation of the PV generator. Monitoring parameters such as battery voltage, charging status, power output, and system efficiency will be essential for maintaining the performance and longevity of the system. Additionally, the project will address important considerations such as system safety, maintenance requirements, and environmental impact. The design will incorporate safety features to protect the system from overcharging, over-discharging, and other potential hazards. Proper maintenance procedures will be outlined to ensure the longevity and efficiency of the PV generator. Overall, the Stand Alone 2kVA PV Generator project aims to deliver a reliable, efficient, and sustainable off-grid power solution for remote applications. The design and implementation of the standalone PV system will serve as a model for future renewable energy projects and contribute to the advancement of clean energy technologies.

Project Overview

1.0   INTRODUCTION

          The sun provides the energy to sustain life in our solar system. In one year, the earth receives enough energy from the sun to meet its energy needs for nearly a year. Photovoltaic is the direct conversion of sunlight to electricity, it is a beautiful alternative source of energy to conventional sources of electricity for many reasons it is safe, silent, non – polluting, renewable, highly modular in that their capacity can be increased incrementally to match with gradual load growth, it is reliable with minimal failure rates and projected service lifetimes of about 20 to 30 years. It requires no special training to operate, it contains no moving parts, it is extremely reliable and it’s virtually maintenance free, and can be installed almost anywhere.

          A photovoltaic system is a complete set of interconnected components for converting sunlight into electricity by photovoltaic process including array, balance of system and load. The intensity of sunlight that reaches the earth varies with time of the day, season, location and the weather condition, the total energy on a daily or annual basis is called Irradiation and indicates the straight of sunshine. Irradiation is expressed in Whm – 2 per day or KWh.m-2 per day. Different geographical regions experience different weather patterns, so the site we live is a major factor that affects the photovoltaic system design, the orientation of the panels, finding the number of days of autonomy where the sun does not shine in the sky and choosing the best tilt angle of the solar panels.

          Photovoltaic panels collect more energy, if they are installed on a tracker that follows the movement of the sun although it is an expensive process; for this process they are usually fixed in a particular position with an angle called the tilt angle B. This angle varies according to seasonal variation, for instance, in summer the solar panel must be more horizontal while in the winter, it is placed at a steeper angle.

          In this project, the various components of a photovoltaic system and factors affecting its design for the purpose of domestic use is explained. Then a residence model with medium energy requirements in one of the offices in Pure and Applied Physics Department, Ladoke Akintola University of Technology, Ogbomoso is taken as a study case. The design procedures of the photovoltaic system will be provided in ascending manner.

1.1     SYSTEM DESCRIPTION

1.11   Components

          Photovoltaic system is considered of a variety of equipment in addition to the photovoltaic array, a balance of system that wired together to form the entire fully functional system capable of supplying electric power and these components are:

  1. Photovoltaic Cells: Represent the fundamental power conversion units, they are made from semi – conductor materials and convert sunlight energy to electricity. Individual photovoltaic cells are usually quite small, producing around 1 to 2 watt of power. To increase the power output of a photovoltaic cells, they have to be connected together to form modules, modules are connected in parallel and series to form larger parts/units called Panels and Arrays to produce electric power that meets any electric need.

Solar panel.

  • A storage Medium: Battery bank which is involved in the system to make the energy available at night or at days of autonomy (sometimes called dark days) when the sun is not providing enough radiation the standard batteries that are used in solar system are lead – acid batteries because of their high performance; long life and cost effectiveness.

battery

  • A Voltage Regulator or Charge Controller: Is an essential part of nearly all power system that change batteries, the basic function of a controller is to block reverse current and prevent battery from getting overcharged. Some controllers also prevent battery over discharging, electrical overload, display battery status and the flow of power.

Solar regulator

  • An Inverter: Is device that changes a low d.c voltage to usable a.c voltage. It is one of the solar energy. Systems main element is the solar panel generate d.c voltage. Inverters are different by the output wave format, output power and installation type. It is also called power conditioner because it changes the form of the electric power. There are two types of output wave format: Modified Sine wave (MSW) and Pure Sine wave (PSW). The MSW inverters are economical and efficient, while the pure sine wave inverters are now sophisticated with high end performance and can operate virtually any type of load. There are two types of inverters that can be installed, the stand alone installation and grid connection installation.

Blazingprojects Mobile App

📚 Over 50,000 Project Materials
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Software coding and Machine construction
🎓 Postgraduate/Undergraduate Research works
📥 Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Mechanical engineeri. 3 min read

Design and analysis of a solar-powered desalination system....

The project titled "Design and Analysis of a Solar-Powered Desalination System" focuses on developing a sustainable solution to address the global wat...

BP
Blazingprojects
Read more →
Mechanical engineeri. 4 min read

Design and analysis of a solar-powered desalination system for remote communities....

The project "Design and Analysis of a Solar-Powered Desalination System for Remote Communities" aims to address the pressing need for sustainable acce...

BP
Blazingprojects
Read more →
Mechanical engineeri. 2 min read

Design and Optimization of a Solar-Powered Refrigeration System...

The project topic, "Design and Optimization of a Solar-Powered Refrigeration System," focuses on the development of an innovative and sustainable cool...

BP
Blazingprojects
Read more →
Mechanical engineeri. 2 min read

Design and Optimization of a Fuel-Efficient Hybrid Electric Vehicle Powertrain...

The project on the "Design and Optimization of a Fuel-Efficient Hybrid Electric Vehicle Powertrain" aims to address the pressing need for sustainable ...

BP
Blazingprojects
Read more →
Mechanical engineeri. 2 min read

Design and development of an energy-efficient wind turbine for urban applications...

The project "Design and development of an energy-efficient wind turbine for urban applications" aims to address the growing need for sustainable energ...

BP
Blazingprojects
Read more →
Mechanical engineeri. 4 min read

Design and optimization of a novel energy-efficient HVAC system for commercial build...

The project topic, "Design and optimization of a novel energy-efficient HVAC system for commercial buildings," focuses on addressing the growing need ...

BP
Blazingprojects
Read more →
Mechanical engineeri. 4 min read

Design and analysis of an energy-efficient hydraulic system for industrial applicati...

The project on "Design and Analysis of an Energy-Efficient Hydraulic System for Industrial Applications" aims to address the growing need for sustaina...

BP
Blazingprojects
Read more →
Mechanical engineeri. 4 min read

Design and Development of an Automated Robotic Arm for Industrial Applications...

The project topic, "Design and Development of an Automated Robotic Arm for Industrial Applications," focuses on the innovative integration of robotics...

BP
Blazingprojects
Read more →
Mechanical engineeri. 3 min read

Design and optimization of an energy-efficient hybrid vehicle powertrain....

The project on "Design and optimization of an energy-efficient hybrid vehicle powertrain" focuses on addressing the growing need for sustainable trans...

BP
Blazingprojects
Read more →
WhatsApp Click here to chat with us