<p> Title Page ……………………………………………………………………………………………………………………. i<br>Declaration…………………………………………………………………………………………………………………. ii<br>Certification ………………………………………………………………………………………………………………. iii<br>Dedication …………………………………………………………………………………………………………………. iv<br>Acknowledgements …………………………………………………………………………………………………….. v<br>Abstract …………………………………………………………………………………………………………………….. vi<br>Table of Contents …………………………………………………………………………………………………….. viii<br>List of Tables ……………………………………………………………………………………………………………. xii<br>List of Figures ………………………………………………………………………………………………………….. xiii<br>List of Plates ……………………………………………………………………………………………………………. xiv<br>List of Appendices …………………………………………………………………………………………………….. xv<br>Nomenclature…………………………………………………………………………………………………………… xvi<br>1.0 INTRODUCTION………………………………………………………………………………………………… 1<br>1.1Background ………………………………………………………………………………………………………….. 1<br>1.2Statement of the Problem ………………………………………………………………………………………. 2<br>1.3Justification of the Research ………………………………………………………………………………….. 3<br>1.4Aim and Objectives of the Study ……………………………………………………………………………. 4<br>1.5 Scope……………………………………………………………………………………………………………………. 5<br>2.0 LITERATURE REVIEW …………………………………………………………………………………….. 6<br>2.1Background History………………………………………………………………………………………………. 6<br>2.2Renewable Solid Fuels …………………………………………………………………………………………… 6<br>2.3Characteristics of Fluidised Bed Combustion …………………………………………………………. 7<br>2.4Types of Fluidised Bed Combustors ……………………………………………………………………….. 8<br>2.4.1Atmospheric fluidised bed combustor …………………………………………………………………….. 8<br>ix<br>2.4.2 Pressurized fluidised bed combustor ……………………………………………………………………… 8<br>2.4.3 Bubbling fluidised bed …………………………………………………………………………………………. 9<br>2.4.4 Circulating fluidised bed ………………………………………………………………………………………. 9<br>2.5 Advantages of Fluidised Bed Combustion ……………………………………………………………. 10<br>2.6 Applications of Fluidised Bed Combustion ………………………………………………………….. 10<br>2.7Principle of Fluidisation ………………………………………………………………………………………. 11<br>2.8Fluidisation Regimes ……………………………………………………………………………………………. 11<br>2.9Review of Related Works …………………………………………………………………………………….. 12<br>2.10 Theoretical Background ……………………………………………………………………………………. 14<br>2.10.1 Thermal stress analysis …………………………………………………………………………………….. 14<br>2.10.2 Geldart’s Classification …………………………………………………………………………………….. 15<br>2.11Energy Potential in Maize Cobs …………………………………………………………………………. 17<br>2.12Brief Description of ERGUN 6.2 Software ………………………………………………………….. 18<br>3.0 MATERIALS AND METHOD …………………………………………………………………………… 19<br>3.1 Description of Bubbling Fluidised Bed Combustor ………………………………………………. 19<br>3.2Materials …………………………………………………………………………………………………………….. 20<br>3.2.1 Maize cobs ……………………………………………………………………………………………………….. 20<br>3.3 Material Selection ………………………………………………………………………………………………. 20<br>3.3.1 Fluidised bed cylinder ………………………………………………………………………………………… 21<br>3.3.2 Distributor ………………………………………………………………………………………………………… 21<br>3.3.3 Cyclone ……………………………………………………………………………………………………………. 21<br>3.3.4 Feed hopper ………………………………………………………………………………………………………. 21<br>3.3.5Insulator ……………………………………………………………………………………………………………. 22<br>3.4Design Analysis……………………………………………………………………………………………………. 22<br>3.4.1 Bed temperature ………………………………………………………………………………………………… 22<br>3.4.2 Bed depth …………………………………………………………………………………………………………. 23<br>3.4.3 Bed material and particle size ……………………………………………………………………………… 23<br>3.4.4 Minimum fluidisation velocity ……………………………………………………………………………. 24<br>3.4.5 Terminal velocity ………………………………………………………………………………………………. 24<br>3.4.6 Superficial velocity ……………………………………………………………………………………………. 25<br>x<br>3.4.7 Gas viscosity …………………………………………………………………………………………………….. 26<br>3.4.8 Gas density ……………………………………………………………………………………………………….. 26<br>3.4.9 Bed voidage ……………………………………………………………………………………………………… 26<br>3.4.10 Design of gas distributor …………………………………………………………………………………… 27<br>3.4.11 Distributor grids for bubbling fluidised beds ……………………………………………………….. 27<br>3.4.11.1 Pressure drop ………………………………………………………………………………………………… 28<br>3.4.11.2 Orifice velocity …………………………………………………………………………………………….. 28<br>3.4.11.3 Orifice number ……………………………………………………………………………………………… 29<br>3.4.12 Distributor thickness ………………………………………………………………………………………… 29<br>3.4.13 Plenum chamber………………………………………………………………………………………………. 29<br>3.4.14 Bed expansion design ………………………………………………………………………………………. 30<br>3.4.15 Bubble velocity ……………………………………………………………………………………………….. 31<br>3.4.16 Bubble diameter ………………………………………………………………………………………………. 31<br>3.4.17 Volume fraction of bubbles in the bed ………………………………………………………………… 32<br>3.4.18 Transport disengagement height (TDH) ……………………………………………………………… 33<br>3.4.19 Cylinder thickness ……………………………………………………………………………………………. 34<br>3.4.20 Insulation thickness ………………………………………………………………………………………….. 34<br>3.4.21 Entrainment …………………………………………………………………………………………………….. 35<br>3.4.21.1 Design of cyclone …………………………………………………………………………………………. 35<br>3.4.21.2 Cyclone diameter ………………………………………………………………………………………….. 35<br>3.5Design Consideration …………………………………………………………………………………………… 37<br>3.5.1 Calorific value …………………………………………………………………………………………………… 37<br>3.5.2 Combustion temperature …………………………………………………………………………………….. 37<br>3.5.3 Minimization of combustible losses …………………………………………………………………….. 37<br>3.5.4 Gravity chute feed hopper …………………………………………………………………………………… 38<br>3.5.5 Bed material and bed height ……………………………………………………………………………….. 38<br>3.5.6 Power Requirement ……………………………………………………………………………………………. 38<br>3.6Design Calculations ……………………………………………………………………………………………… 39<br>3.7 Equipment …………………………………………………………………………………………………………. 39<br>3.8Construction ……………………………………………………………………………………………………….. 40<br>3.8.1 Cylinder……………………………………………………………………………………………………………. 40<br>xi<br>3.8.2 Distributor grid………………………………………………………………………………………………….. 41<br>3.8.3 Cyclone ……………………………………………………………………………………………………………. 41<br>3.8.4 Feed hopper ………………………………………………………………………………………………………. 42<br>3.8.5 Blower ……………………………………………………………………………………………………………… 42<br>3.8.6 Insulation………………………………………………………………………………………………………….. 42<br>3.9Simulation of Fluidised Bed …………………………………………………………………………………. 42<br>3.9.1 Introduction ………………………………………………………………………………………………………. 42<br>3.9.2 Parameters for fluidized bed simulation ……………………………………………………………….. 44<br>3.9.3 Data requirement ……………………………………………………………………………………………….. 46<br>4.1Ignition/Testing Procedure ………………………………………………………………………………….. 49<br>4.2Bed Temperature ………………………………………………………………………………………………… 49<br>4.3 Flue Gas Temperature ………………………………………………………………………………………… 51<br>4.4Volume Flow Rate ……………………………………………………………………………………………….. 53<br>4.5 Results Of Simulation …………………………………………………………………………………………. 54<br>4.5.1 Particle …………………………………………………………………………………………………………….. 54<br>4.5.2 Grid …………………………………………………………………………………………………………………. 55<br>4.5.3 Bubbling …………………………………………………………………………………………………………… 56<br>4.5.4 Reh diagram ……………………………………………………………………………………………………… 57<br>4.5.5 Entrainment ………………………………………………………………………………………………………. 58<br>4.5.6 Cyclone ……………………………………………………………………………………………………………. 59<br>4.5.7 Fluidised bed modelling and expert analysis …………………………………………………………. 60<br>4.5.8 Comparing calculated and simulated values ………………………………………………………….. 61<br>4.5.9 Estimated Cost of a Fluidised Bed System ……………………………………………………………. 61<br>5.0 SUMMARY, CONCLUSION AND RECOMMENDATION ………………………………… 63<br>5.1Summary …………………………………………………………………………………………………………….. 63<br>5.2Conclusion ………………………………………………………………………………………………………….. 63<br>5.3 Recommendation………………………………………………………………………………………………… 64<br>REFERENCES ………………………………………………………………………………………………………… 65<br>APPENDICES …………………………………………………………………………………………………………. 72<br>xii <br></p>
📚 Over 50,000 Project Materials
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Project Journal Publishing
🎓 Undergraduate/Postgraduate
📥 Instant Whatsapp/Email Delivery
The project "Design and Analysis of a Solar-Powered Desalination System for Remote Communities" aims to address the pressing need for sustainable acce...
The project topic, "Design and Optimization of a Solar-Powered Refrigeration System," focuses on the development of an innovative and sustainable cool...
The project on the "Design and Optimization of a Fuel-Efficient Hybrid Electric Vehicle Powertrain" aims to address the pressing need for sustainable ...
The project "Design and development of an energy-efficient wind turbine for urban applications" aims to address the growing need for sustainable energ...
The project topic, "Design and optimization of a novel energy-efficient HVAC system for commercial buildings," focuses on addressing the growing need ...
The project on "Design and Analysis of an Energy-Efficient Hydraulic System for Industrial Applications" aims to address the growing need for sustaina...
The project topic, "Design and Development of an Automated Robotic Arm for Industrial Applications," focuses on the innovative integration of robotics...
The project on "Design and optimization of an energy-efficient hybrid vehicle powertrain" focuses on addressing the growing need for sustainable trans...
The project "Design and Optimization of a Solar-Powered Cooling System for Automotive Applications" focuses on the development of an innovative coolin...