<p> </p><p>Title page — – – – – – – – – – – i </p><p>Declaration — – – – – – – – – – -ii</p><p>Approval page — – – – – – – – – – -iii</p><p>Dedication — – – – – – – – – – -iv</p><p>Acknowledgement — – – – – – – – – -v </p><p>Table of content — – – – – – – – – -vi Abstract — – – – – – – – – – – -vii</p> <br><p></p>
Mathieu equation is a special case of a linear second order homogeneous differential equation(Ruby1995).The equation was first discussedin1868,by Emile Leonard Mathieuin connection with problem of vibrations in elliptical membrane. He developed the leading terms of the series solution known as Mathieu function of the
elliptical membranes. Adecadelater,Heine defined the periodic Mathieu Angular
Functions of integer order as Fourier cosine and sineseries; furthermore, without
evaluatingthecorrespondingcoefficient,Heobtainedatranscendentalequationfor
characteristicnumbersexpressedintermsofinfinitecontinuedfractions;andalso
showedthatonesetofperiodicfunctionsofintegerordercouldbeinaseriesof
Besselfunction(Chaos-CadorandLey-Koo2002).
Intheearly1880’s,Floquetwentfurthertopublishatheoryandthusasolution
totheMathieudifferentialequation;hisworkwasnamedafterhimas,‘Floquet’s
Theorem’or‘Floquet’sSolution’.StephensonusedanapproximateMathieuequation,
andproved,thatitispossibletostabilizetheupperpositionofarigidpendulumby
vibratingitspivotpointverticallyataspecifichighfrequency.(StépánandInsperger
2003).Thereexistsanextensiveliteratureontheseequations;andinparticular,a
well-highexhaustivecompendiumwasgivenbyMc-Lachlan(1947).
TheMathieufunctionwasfurtherinvestigatedbynumberofresearcherswho
foundaconsiderableamountofmathematicalresultsthatwerecollectedmorethan
60yearsagobyMc-Lachlan(Gutiérrez-Vegaaetal2002).Whittakerandother
scientistderivedin1900sderivedthehigher-ordertermsoftheMathieudifferential
equation.AvarietyoftheequationexistintextbookwrittenbyAbramowitzand
Stegun(1964).
Mathieudifferentialequationoccursintwomaincategoriesofphysicalproblems.
First,applicationsinvolvingellipticalgeometriessuchas,analysisofvibratingmodes
2
inellipticmembrane,thepropagatingmodesofellipticpipesandtheoscillationsof
waterinalakeofellipticshape.Mathieuequationarisesafterseparatingthewave
equation using ellipticcoordinates.Secondly,problemsinvolving periodicmotion
examplesare,thetrajectoryofan electron in aperiodicarrayofatoms,the
mechanicsofthequantumpendulumandtheoscillationoffloatingvessels.
ThecanonicalformfortheMathieudifferentialequationisgivenby
+ y =0, (1.1)
dy 2
dx2 [a-2qcos(2x)] (x)
whereaandqarerealconstantsknownasthecharacteristicvalueandparameter
respectively.
Closely related to the Mathieu differentialequation is the Modified Mathieu
differentialequationgivenby:
– y =0, (1.2)
dy 2
du2 [a-2qcosh(2u)] (u)
whereu=ixissubstitutedintoequation(1.1).
Thesubstitutionoft=cos(x)inthecanonicalMathieudifferentialequation(1.1)
abovetransformstheequationintoitsalgebraicformasgivenbelow:
(1-t) -t + y =0. (1.3) 2 dy 2
dt2
dy
dt
[a+2q(1-2t2)] (t)
Thishastwosingularitiesatt=1,-1andoneirregularsingularityatinfinity,which
impliesthatingeneral(un-likemanyotherspecialfunctions),thesolutionofMathieu
differentialequationcannotbeexpressedintermsofhypergeometricfunctions
(Mritunjay2011).
Thepurposeofthestudyistofacilitatetheunderstandingofsomeofthe
propertiesofMathieufunctionsandtheirapplications.Webelievethatthisstudywill
behelpfulinachievingabettercomprehensionoftheirbasiccharacteristics.This
studyisalsointendedtoenlightenstudentsandresearcherswhoareunfamiliarwith
Mathieufunctions.Inthechaptertwoofthiswork,wediscussedtheMathieu
3
differentialequationandhowitarisesfromtheellipticalcoordinatesystem.Also,we
talkedabouttheModifiedMathieudifferentialequationandtheMathieudifferential
equationinanalgebraicform.Thechapterthreewasbasedonthesolutionstothe
MathieuequationknownasMathieufunctionsandalsotheFloquet’stheory.Inthe
chapterfour,weshowedhowMathieufunctionscanbeappliedtodescribethe
invertedpendulum,ellipticdrumhead,Radiofrequencyquadrupole,Frequency
modulation,Stabilityofafloatingbody,AlternatingGradientFocusing,thePaultrap
for charged particles and the Quantum Pendulum.
📚 Over 50,000 Project Materials
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Software coding and Machine construction
🎓 Postgraduate/Undergraduate Research works
📥 Instant Whatsapp/Email Delivery
The project topic "Optimization of Traffic Flow Using Graph Theory and Network Analysis" focuses on applying mathematical principles to improve traffi...
The project topic "Exploring Chaos Theory in Financial Markets: A Mathematical Analysis" delves into a fascinating intersection between theoretical ma...
The project topic "Applications of Machine Learning in Predicting Stock Prices" focuses on utilizing machine learning algorithms to predict stock pric...
The project topic, "Application of Machine Learning in Predicting Stock Market Trends," focuses on utilizing advanced machine learning techniques to f...
The project topic, "Application of Machine Learning in Predicting Stock Prices," explores the utilization of machine learning techniques to forecast s...
The research project on "Applications of Machine Learning in Predicting Stock Market Trends" aims to explore the integration of machine learning techn...
The project topic "Analyzing the Applications of Machine Learning Algorithms in Predicting Stock Prices" involves the exploration of the utilization o...
The project topic "Applications of Machine Learning in Predicting Stock Prices: A Mathematical Approach" delves into the realm of finance and data sci...
The project on "Applications of Differential Equations in Finance and Economics" focuses on the utilization of mathematical concepts, particularly dif...