Home / Mathematics / Variational inequality in hilbert spaces and their applications

Variational inequality in hilbert spaces and their applications

 

Table Of Contents


<p> </p><p>Acknowledgment i<br>Certication ii<br>Approval iii<br>Dedication v<br>Abstract vi<br>Introduction viii<br>

Chapter ONE

1<br>1 Linear Functional Analysis 1<br>1.1 Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br>1.2 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br>1.3 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br>2 Variational Inequalities in RN 20<br>2.1 Basic Theorems and Denition about Fixed point . . . . . . . . . . . 20<br>2.2 First Theorem about variational inequalities . . . . . . . . . . . . . . 21<br>2.3 Some problems leading to variational inequality . . . . . . . . . . . . 24<br>3 Variational Inequality in Hilbert Spaces 30<br>3.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br>3.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br>4 CONCLUSION 38</p><p>&nbsp;</p> <br><p></p>

Project Abstract

<p> </p><p>The study of variational inequalities frequently deals with a mapping F from a vector<br>space X or a convex subset of X into its dual X0 . Let H be a real Hilbert space<br>and a(u; v) be a real bilinear form on H. Assume that the linear and continuous<br>mapping A H ô€€€! H0 determines a bilinear form via the pairing a(u; v) = hAu; vi.<br>Given K H and f 2 H0 . Then, Variational inequality(VI) is the problem of<br>nding u 2 K such that a(u; v ô€€€ u) hf; v ô€€€ ui, for all v 2 K. In this work, we<br>outline some results in theory of variational inequalities. Their relationships with<br>other problems of Nonlinear Analysis and some applications are also discussed<br>Keywords<br>Sobolev spaces, Variational inequalities,Hilbert Spaces, Elliptic variational inequalities</p><p>&nbsp;</p> <br><p></p>

Project Overview

<p> </p><p>Linear Functional Analysis<br>The aim of this Chapter is to recall basic results from functional analysis and Distribution<br>theory. The chapter is divided into three sections. The rst section introduces<br>Hilbert spaces and some basic properties of Hilbert spaces. The second section introduces<br>basic concept of Distribution theory and the last section deals with basic<br>results about Sobolev spaces that are of important in the remaining chapters.<br>1.1 Hilbert Spaces<br>Let us recall some denitions, theorems, and elementary properties on Hilbert<br>spaces.<br>Denition 1.1.1 Let E be a linear space over K, (K = R or C). An inner product<br>on E is a function<br>h:; :i : E E ô€€€! K<br>such that the following are satised, for x; y; z 2 E; ; 2 K:<br>(i) hx; xi 0 and hx; xi = 0 if and only if x = 0<br>(ii) hx; yi = hx; yi<br>(iii) hx + y; zi = hx; zi + hy; zi.<br>The pair (E; h:; :i) is called an inner product space.<br>Remark 1.1.2 A complete inner product space is called a Hilbert space.<br>Examples<br>1 Euclidean space: The space RN is a Hilbert space with the inner product<br>dened by<br>hx; yi =<br>PN<br>i=1 xiyi<br>where, x = (x1; x2; :::; xN) and y = (y1; y2; :::; yN):<br>We obtain that<br>1<br>kxk =<br>p<br>hx; xi = (<br>PN<br>i=1 x2i<br>)<br>1<br>2 .<br>2 Space L2(<br>).<br>L2(<br>) := ff :<br>ô€€€! R : f is measurablbe and<br>Z</p><p>f2dx &lt; 1g<br>where<br>is an open set in RN, is a Hilbert space with the inner product dened by<br>hf; gi =<br>Z</p><p>f(x)g(x)dx;<br>and<br>kfk = (<br>Z</p><p>jf(x)j2dx)<br>1<br>2 :<br>Proposition 1.1.3 [2] (Cauchy-Schwart’s Inequality) Let E be an inner prod-<br>uct space. For arbitary x; y 2 E we have<br>jhx; yij2 hx; xihy; yi<br>Proof. Let x; y 2 E be arbitrary. Take z 2 C with jzj = 1 and let t 2 R. Then,<br>0 htzx + y; tzx + yi<br>= htzx; tzxi + htzx; yi + hy; tzxi + hy; yi<br>= t2zzhx; xi + tzhx; yi + tzhy; xi + hy; yi<br>= t2jzjhx; xi + tzhx; yi + tzhx; yi + hy; yi<br>= t2hx; xi + 2tRe(zhx; yi) + hy; yi<br>t2hx; xi + 2tjzhx; yij + hy; yi<br>= t2hx; xi + 2tjzjjhx; yij + hy; yi<br>= t2hx; xi + 2tjhx; yij + hy; yi: (1.1.1)<br>t2hx; xi + 2tjhx; yij + hx; xi is a quadratic function with variable t 2 R. Since,<br>t2hx; xi + 2tjhx; yij + hy; yi 0, for arbitrary t 2 R,<br>Hence,<br>jhx; yij2 hx; xihy; yi, for all x; y 2 E.<br>Theorem 1.1.4 [2] Let h:; :i be an inner product on E, then the mapping<br>x 7ô€€€! kxk =<br>p<br>hx; xi<br>is a norm on E.<br>Proof.<br>Let x; y 2 E be arbitrary. From the denition of the inner product, we have<br>2<br>hx; xi = 0 , x = 0,<br>hence<br>kxk2 = hx; xi = 0 , x = 0.<br>Also,<br>hx; xi = jjhx; xi.<br>And<br>kxk =<br>p<br>hx; xi<br>=<br>p<br>jj2hx; xi<br>= jj<br>p<br>hx; xi<br>= kxk:<br>Let x; y 2 E. Then,<br>kx + yk = hx + y; x + yi<br>= hx; xi + hx; yi + hy; xi + hy; yi<br>= kxk2 + 2Re(hx; yi) + kyk2<br>kxk2 + 2jhx; yij + kyk2<br>kxk2 + 2<br>p<br>(hx; xihy; yi) + kyk2<br>= kxk2 + 2(kxk + kyk) + kyk2<br>= (kxk + kyk)2:<br>Denition 1.1.5 Let E be a linear space and F E is said to be convex if for each<br>x; y 2 F and 2 [0; 1] we have<br>x + (1 ô€€€ )y 2 E.<br>Proposition 1.1.6 [4] (Parallelogram Law) Let E be an inner product space,<br>then for x; y 2 E<br>kx + yk2 + kx ô€€€ yk2 = 2(kxk2 + kyk2).<br>Theorem 1.1.7 [4] Let H denote a real Hilbert space and let K be a closed, convex<br>subset of H. Then for each x 2 H there exists unique y 2 K such that<br>kx ô€€€ yk = inffkx ô€€€ k : 2 Kg: (1.1.2)<br>Proof.<br>Let k 2 K be a minimizing sequence such that<br>lim<br>k!1<br>kk ô€€€ xk = d = inf2Kk ô€€€ xk.<br>Since H is a Hilbert Space, then by the Parallelogram Law, we have<br>kx + yk2 + kx ô€€€ yk2 = 2(kxk2 + kyk2), for all x; y 2 H.<br>3<br>Thus,<br>kk ô€€€ pk2 + kk + pk2 = 2(kkk2 + kpk2); for k; p 2 K.<br>By convexity of K, we have<br>1<br>2k + (1 ô€€€ 1<br>2 )p = 1<br>2 (k + p) 2 K.<br>But d = inf2Kkx ô€€€ k kx ô€€€ k, for all 2 K.<br>Take = 1<br>2 (k + p). Then,<br>d kx ô€€€<br>1<br>2<br>(k + p)k<br>) d2 kx ô€€€<br>1<br>2<br>(k + p)k2<br>) ô€€€d2 ô€€€kx ô€€€<br>1<br>2<br>(k + p)k2:<br>Now, using the Parallelogram Law and setting y = xô€€€k 2 H and x = xô€€€p 2 H,<br>we obtain that<br>0 kk ô€€€ pk2<br>= 2kx ô€€€ kk2 + 2kx ô€€€ pk2 ô€€€ k2x ô€€€ (k + p)k2<br>= 2kx ô€€€ kk2 + 2kx ô€€€ pk2 ô€€€ 4kx ô€€€<br>1<br>2<br>(k + p)k2<br>2kx ô€€€ kk2 + 2kx ô€€€ pk2 ô€€€ 4d2:<br>But lim<br>k!1<br>kx ô€€€ kk = d. Then,<br>2kx ô€€€ kk2 + 2kx ô€€€ pk2 ô€€€ 4d2 ô€€€! 0 as n ô€€€! 1.<br>Consequently,<br>kk ô€€€ pk2 ô€€€! 0 as n ô€€€! 1<br>) kk ô€€€ pk ô€€€! 0 as n ô€€€! 1<br>Hence, (k)k0 is Cauchy sequence in K. Since H is a Hilbert space, then there<br>exists ^x 2 H such that<br>k ô€€€! ^x.<br>But K is a closed subset of H and k 2 K, thus ^x 2 K.<br>Therefore,<br>kx ô€€€ ^xk = lim<br>k!1<br>kx ô€€€ kk = d.<br>For uniqueness: Let ^x; ^y 2 K such that<br>kx ô€€€ ^xk = inf2Kkx ô€€€ k<br>and<br>kx ô€€€ ^yk = inf2Kkx ô€€€ k.<br>4<br>By the Parallelogram law and convexity of K, we obtain<br>0 k^x ô€€€ ^yk<br>= 2kx ô€€€ ^xk2 + 2kx ô€€€ ^yk2 ô€€€ 4kx ô€€€<br>1<br>2<br>(^x ô€€€ ^y)k2<br>2d2 + 2d2 ô€€€ 4d2 = 0:<br>Then k^x ô€€€ ^yk = 0 , ^x = ^y. Hence, there is a unique y 2 K such that<br>kx ô€€€ yk = inf2Kkx ô€€€ k.<br>Remark 1.1.8 The point y 2 H satisfying (1.1.2) is called a projection of x on K<br>and y = PKx.<br>Corollary 1.1.9 [2]<br>Let K be a closed, convex subset of a Hilbert space H. Then the operator PK is<br>nonexpansive, that is<br>kPKx ô€€€ PKx0k kx ô€€€ x0k, for all x; x0 2 H.<br>Proof.<br>Let x; x0 2 H such that y = PKx, y0 = PKx0 . Then, for y; y0 2 K we have<br>hy; ô€€€ yi hx; ô€€€ yi, for all 2 K,<br>and<br>hy0 ; ô€€€ y0i hx0 ; ô€€€ y0i , for all 2 K.<br>Setting = y0 and = y in the rst and second inequality respectively we obtain<br>hy; y0 ô€€€ yi hx; y0 ô€€€ yi and hy0 ; y ô€€€ y0i hx0 ; y ô€€€ y0i.<br>Adding we obtain that,<br>hy; y0 ô€€€ yi + hy0 ; y ô€€€ y0i hx; y0 ô€€€ yi + hx0 ; y ô€€€ y0i,<br>hence<br>hy; y0 ô€€€ yi ô€€€ hy0 ; y0 ô€€€ yi hx; y0 ô€€€ yi ô€€€ hx0 ; y0 ô€€€ yi,<br>and<br>hy ô€€€ y0 ; y0 ô€€€ yi hx ô€€€ x0 ; y0 ô€€€ yi.<br>Consequently,<br>ô€€€hy ô€€€ y0 ; y ô€€€ y0i hx ô€€€ x0 ; y0 ô€€€ yi.<br>Then,<br>hy ô€€€ y0 ; y ô€€€ y0i hx ô€€€ x0 ; y ô€€€ y0i<br>5<br>ky ô€€€ y<br>0<br>k2 = hy ô€€€ y<br>0<br>; y ô€€€ y<br>0<br>i<br>hx ô€€€ x<br>0<br>; y ô€€€ y<br>0<br>i<br>jhx ô€€€ x<br>0<br>; y ô€€€ y<br>0<br>ij<br>kx ô€€€ x<br>0<br>kky ô€€€ y<br>0<br>k;<br>and thus<br>ky ô€€€ y0k kx ô€€€ x0k.<br>Therefore,<br>kPKx ô€€€ PKx0k kx ô€€€ x0k, for all x; x0 2 H:<br>Theorem 1.1.10 [8] Let K be a closed convex subset of a real Hilbert space H.<br>Then y = PKx, the projection of x on K, if and only if y 2 K such that<br>hy; ô€€€ yi hx; ô€€€ yi, for all 2 K:<br>Proof.<br>Let x 2 H and y = PKx. Since K is convex, then<br>t + (1 ô€€€ t)y = y + t( ô€€€ y) 2 K, for all 2 K, 0 t 1.<br>Set (t) = kx ô€€€ (y + t( ô€€€ y))k2, 0 t 1.<br>(t) = kx ô€€€ y ô€€€ t( ô€€€ y)k2<br>= kx ô€€€ yk2 ô€€€ 2tRehx ô€€€ y; ô€€€ yi + t2k ô€€€ yk2<br>= kx ô€€€ yk2 ô€€€ 2thx ô€€€ y; ô€€€ yi + t2k ô€€€ yk2:<br>Then,<br>0(t) = ô€€€2hx ô€€€ y; ô€€€ yi + 2tk ô€€€ yk2,<br>thus, 0(0) = ô€€€2hx ô€€€ y; ô€€€ yi. Therefore, the function attains its minimum at<br>t = 0. Thus,</p><p>0<br>(0) 0 , hx ô€€€ y; ô€€€ yi 0; 2 K<br>, hx; ô€€€ yi ô€€€ hy; ô€€€ y &gt; 0<br>, hy; ô€€€ yi hx; ô€€€ yi; 2 K:<br>Let y 2 K. Then,<br>hy; ô€€€ yi hx; ô€€€ yi, 2 K.<br>Thus,<br>hy; ô€€€ yi ô€€€ hx; ô€€€ yi 0<br>and<br>hy ô€€€ x; ô€€€ yi 0<br>6<br>0 hy ô€€€ x; ô€€€ yi<br>= hy ô€€€ x; ( ô€€€ x) + (x ô€€€ y)i<br>ô€€€kx ô€€€ yk2 + hy ô€€€ x; ô€€€ xi:<br>Therefore,<br>ky ô€€€ xk2 hy ô€€€ x; ô€€€ xi<br>jhy ô€€€ x; ô€€€ xij<br>ky ô€€€ xkk ô€€€ xk:<br>Thus,<br>ky ô€€€ xk k ô€€€ xk.<br>Hence for each x 2 H there exists y 2 K such that<br>ky ô€€€ xk = inf2Kk ô€€€ xk.<br>Corollary 1.1.11 [2] Let H be a real Hilbert space and K a closed subspace of H.<br>Then, for arbitrary vector x 2 H, there exist a unique vector ~y 2 K such that<br>kx ô€€€ ~yk kx ô€€€ yk, for all y 2 K.<br>Theorem 1.1.12 [2] (Reiesz Theorem) Let H be a Hilbert space. Then H0 = H,<br>where H0 denote the dual of H.<br>Theorem 1.1.13 [4] (Riesz Representation Theorem) Let H be a Hilbert<br>space and let f be a bounded linear functional on H. Then, there exists a unique<br>vector of x0 2 H such that<br>f(x) = hx; x0i, for each x 2 H.<br>Moreover, kfk = kx0k.<br>1.2 Function spaces<br>We recall some denitions of function spaces used in this thesis<br>Denition 1.2.1 An open connected set<br>RN is called a domain. By<br>, we<br>denote the closure of<br>; @<br>is the boundary and<br>o is the interior of<br>.<br>x = (x1; x2; :::; xN) 2 RN and = (1; 2; :::; N) 2 N is a multi-index.<br>jj = 1 + 2 + ::: + N<br>Du :=<br>@jju<br>@x1<br>1 @x2<br>2 :::@xN<br>N<br>ru = (@1u; @2u; :::; @Nu)<br>jruj = (<br>XN<br>j=1<br>[email protected])<br>1<br>2<br>7<br>Denition 1.2.2 Let f :<br>ô€€€! R be continuous. We dene support of f by<br>supp(f) = fx 2<br>: f(x) 6= 0g.<br>The function is said to be of compact support on<br>if the support is a compact set<br>contained inside<br>. The space of test functions in<br>is denoted by D(<br>) and dened<br>D(<br>) := ff :<br>ô€€€! R;C1 : support(f ) is compactg<br>= ff 2 C1(<br>) : supp(f) is compactg<br>Denition 1.2.3 Let ( n)n1 be a sequence in D(<br>) and 2 D(<br>). Then, n !<br>in D(<br>) if<br>(i) there exists a compact set K<br>such that, supp( n) K, for all n 1.<br>(ii) D n ! D uniformly on K as n ! 1 and for all 2 Nn.<br>Denition 1.2.4 A distribution on<br>is any continuous linear mapping T : D(<br>) !<br>R. The set of all distribution on<br>is denoted by D0(<br>).<br>Means that if<br>n ! 0 in D(<br>) , then (T; n) ! 0 in R.<br>Example.<br>The map : D(R) ! R dened by h; i = ( ) = (0)<br>is a distribution. It is usually called Dirac distribution.<br>To see this, we have that is linear, since for 1; 2 2 D(<br>) and 2 R,<br>( 1 + 2) = h; 1 + 2i<br>= ( 1 + 2)(0)<br>= 1(0) + 2(0)<br>= h; 1i + h; 2i<br>= h; 1i + h; 2i<br>= ( 1) + ( 2):<br>Hence, is linear.<br>Let f ngn1 D(R) such that n ! 0 as n ! 1 on D(R).<br>But n ! 0 on D(R) implies that there exists a compact set K R such that<br>supp( n) K and for all j 2 N, (j)<br>n ! 0 uniformly on R.<br>Thus, 0 j n(0)j supx2Kj n(x)j! 0 as n ! 1. And then h; ni = n(0) ! 0<br>as n ! 1. Therefore, is continuous and hence is a distribution.<br>Denition 1.2.5 A funtion f :<br>! R is said to be locally integrable if for any<br>compact set, K<br>, we have that<br>Z<br>K<br>jf(x)jdx &lt; 1:<br>8<br>The collection of all locally integrable funtionals is denoted by L1l<br>oc(<br>). For any<br>f 2 L1l<br>oc(<br>), f gives a distribution Tf dened by<br>(Tf ; ) =<br>Z</p><p>f(x) (x)dx; for all 2 D(<br>):<br>Remark 1.2.6 L1l<br>oc(<br>) D0(<br>).<br>Theorem 1.2.7 [6] Let T 2 D0(<br>) be a distribution on an open set<br>in RN, and<br>, a multi index. Then, for all 2 Nn, n 1<br>(DT; ) = (ô€€€1)jj(T;D ), D 2 D0(<br>), for all 2 D(<br>).<br>Denition 1.2.8 By Ck(<br>), we denote the space of k times dierentiable (real<br>valued) functions on<br>.<br>Denition 1.2.9 [2] By Ck;(<br>), 0 &lt; &lt; 1, we indicate the functions k times<br>continuously dierentiable in<br>whose derivative of order k are continuous , 0 &lt;<br>&lt; 1.<br>1.3 Sobolev spaces<br>Denition 1.3.1 Let<br>be open set in RN. Let p 2 R with 1 p &lt; +1.<br>LP (<br>) := ff :<br>ô€€€! R; measurable :<br>Z</p><p>jfjpd &lt; +1g<br>where is a measure on<br>and<br>kfkp := (<br>Z</p><p>jfjpd)<br>1<br>p<br>L1(<br>) := ff :<br>ô€€€! R : f is essentially boundedg, i.e f 2 L1(<br>) , there exists<br>c &gt; 0 such that jf(x) c a.e on<br>and kfk1 = inffc &gt; 0: jf(x)j c a.e on<br>g.<br>Theorem 1.3.2 [6] LP (<br>)is a Banach space for 1 p 1.<br>Proposition 1.3.3 [6] (Holder’s Inequality) Let f 2 Lp(<br>); g 2 Lq(<br>) such that<br>1<br>p + 1<br>q = 1. Then fg 2 L1(<br>). Moreover,<br>Z</p><p>jfgj (<br>Z</p><p>jfjp)<br>1<br>p (<br>Z</p><p>jgjq)<br>1<br>q = kfkpkkgkq: (1.3.1)<br>Denition 1.3.4 The space Hm(<br>) is called Sobolev space of order m and it is<br>dened as<br>Hm(<br>) := ff 2 L2(<br>) : Df 2 L2(<br>); jj mg,<br>endowed with the inner product<br>&lt; f; g &gt;Hm(<br>)=&lt; f; g &gt;L2(<br>) +jm &lt; Df;Dg &gt;L2(<br>) : (1.3.2)<br>9<br>and<br>kfkHm(<br>) = (kfkL2(<br>) + jjmjDfj2)<br>1<br>2 , for all f; g 2 Hm(<br>).<br>Theorem 1.3.5 [6] The spaces Hm(<br>) , m 0 endowed with the inner product<br>(1.1.1) are Hilbert spaces.<br>Proof.<br>Let (fn)n1 be a Cauchy sequence in Hm(<br>). Let &gt; 0 be given. Then, there exists<br>no 2 N such that<br>kfn ô€€€ fmkHm(<br>) for all n;m no.<br>Thus<br>kfn ô€€€ fmk2<br>L2(<br>) +<br>P<br>jjmkDfn ô€€€ Dfmk2 &lt; 2, for all n;m no<br>which implies<br>kfn ô€€€ fmk2<br>L2(<br>) &lt; 2 and<br>P<br>jjmkDfm ô€€€ Dfmk2 &lt; 2, for all n;m no.<br>then<br>kfn ô€€€ fmk &lt; and<br>P<br>jjmkDfn ô€€€ Dfmk 2, for all n;m no.<br>Thus, we obtain that (fn)n1 is a Cauchy sequence in L2(<br>) and (D(fn))n is a<br>Cauchy sequence in L2(<br>). Since L2(<br>) is complete, then there exist f; fi 2 L2(<br>)<br>such that<br>fn ô€€€! f in L2(<br>) as n ô€€€! 1 and Dfn ô€€€! fi in L2(<br>) as n ô€€€! 1.<br>Since L2(<br>) D0(<br>) we obtain that<br>fn ô€€€! f in D0(<br>) and Dfn ô€€€! fi.<br>But Df ô€€€! Df in D0(<br>) as n ô€€€! 1. By uniqueness of limit we obtain that<br>Df = fi in D0(<br>). Thus,<br>fn ô€€€! f in L2(<br>) and Dfn ô€€€! Df in L2(<br>), jj m.<br>Thus f 2 Hm(<br>) with<br>kfn ô€€€ fkL2(<br>) ô€€€! 0 and<br>P<br>jjmkDfn ô€€€ DfkL2(<br>) ô€€€! 0 an n ô€€€! 1.<br>Hence,<br>f 2 Hm(<br>) and kfn ô€€€ fkHm(<br>) ô€€€! 0 as n ô€€€! 1.<br>Therefore, Hm(<br>) is a Hilbert space.<br>For m = 1 we obtain<br>H1(<br>) := ff 2 L2(<br>) : @f<br>@xi<br>2 L2(<br>); i = 1; 2; :::;Ng<br>10<br>and on H1(<br>) we have the following inner product<br>hf; giH1(<br>) = hf; giL2(<br>) +<br>XN<br>i=1<br>h<br>@f<br>@xi<br>;<br>@g<br>@xi<br>iL2(<br>)<br>=<br>Z</p><p>fg +<br>XN<br>i=1<br>Z</p><p>@f<br>@xi<br>@g<br>@xi<br>and<br>kfkH1(<br>) =<br>q<br>hf; giH1(<br>); for all f 2 H1(<br>)<br>=<br>vuut<br>kfk2<br>L2(<br>) +<br>XN<br>i=1<br>k<br>@f<br>@xi<br>kL2(<br>):<br>Denition 1.3.6 We dene H1<br>0(<br>) := D(<br>) jH1(<br>).<br>H1<br>0(<br>) is a Hilbert space with the norm k:kH1(<br>) and we dene the norm on H1<br>0(<br>)<br>by<br>kukH1<br>0 (<br>) :=<br>sZ</p><p>jruj2:<br>Theorem 1.3.7 [6] (Poincare’s inequality) Suppose<br>is bounded. Then, there<br>exists c &gt; 0 such that<br>Z</p><p>u2dx c2<br>Z</p><p>jruj2dx; for all u 2 H1<br>0(<br>):<br>Proof.<br>Since<br>is bounded. Then<br>Ni<br>=1[ai; bi]. We proceed this way, we rst prove it<br>in D(<br>).<br>Let ‘ 2 D(<br>) such that ‘(t; x) = ‘(t; x2; x3; :::; xN).<br>But<br>R t<br>a1<br>@<br>@s'(s; x)ds = ‘(t; x) ô€€€ ‘(a1; x) = ‘(t; x): Then using Cauchy Schwartz<br>inequality, we obtain that<br>‘2(t; x) = (<br>Z t<br>a1<br>@<br>@s<br>‘(s; x)ds)2<br>(t ô€€€ a1)<br>Z t<br>a1<br>(<br>@<br>@s<br>‘(s; x))2ds:<br>11<br>Integrating, we obtain that<br>Z</p><p>‘2(t; x)dtdx<br>Z</p><p>((t ô€€€ a1)<br>Z t<br>a1<br>(<br>@<br>@s<br>‘(s; x))2)ds)dtdx</p><p>Z</p><p>Z b1<br>a1<br>(t ô€€€ a1)(<br>@<br>@s<br>‘(s; x))2)dsdtdx<br>=<br>Z b1<br>a1<br>(t ô€€€ a1)dt<br>Z</p><p>(<br>@<br>@s<br>‘(s; x))2dsdx<br>=<br>1<br>2<br>(b1 ô€€€ a1)2<br>Z</p><p>(<br>@<br>@s<br>‘(s; x))2dsdx</p><p>1<br>2<br>(b1 ô€€€ a1)2<br>Z</p><p>jr’j2:<br>Choose c2 = 1<br>2 (b1 ô€€€ a1)2 &gt; 0. Then<br>Z</p><p>‘2 c2<br>Z</p><p>jr’j2; for all ‘ 2 D(<br>): (1.3.3)<br>Now, let u 2 H1<br>0(<br>) = D(<br>) jH1(<br>). Then, there exist (‘p)p1 D(<br>) such that<br>k’p ô€€€ uk ! 0 as p ! 1.<br>We have Z</p><p>‘2<br>p c2<br>Z</p><p>jr’pj2: (1.3.4)<br>Z</p><p>j’p ô€€€ uj2 +<br>Z</p><p>jr(‘p ô€€€ u)j2 ! 0; as n ! 1:<br>And thus,<br>Z</p><p>‘2<br>p !<br>Z</p><p>u2and<br>Z</p><p>jr’pj2 !<br>Z</p><p>jruj2:<br>Letting p ! 1 in equation (1.3.4), we obtain that<br>Z</p><p>u2 c2<br>Z</p><p>jruj2; for all u 2 H1<br>0(<br>):<br>Theorem 1.3.8 [6] (Poincare-Wirtinger’s inequality) Suppose<br>is smooth<br>and connected, then for any u 2 H1(<br>) there exists c &gt; 0 such that<br>Z</p><p>ju ô€€€ ^uj2 c2<br>Z</p><p>jruj2; for all u 2 H1(<br>);<br>where<br>^u =<br>1<br>mes(<br>)<br>Z</p><p>u:<br>12<br>Corollary 1.3.9 The norm k:kH1<br>0 (<br>) is equivalent to k:kH1(<br>).<br>Proof of Corollary.<br>Let u 2 H1<br>0 (<br>). Then,<br>kuk2<br>H1(<br>) = kuk2<br>L2(<br>) +<br>Z</p><p>jruj2</p><p>Z</p><p>jruj2<br>= kuk2<br>H1<br>0 (<br>):<br>Thus,<br>kukH1<br>o (<br>) kukH1(<br>): (1.3.5)<br>Now using Poincare’s inequality we obtain that<br>kuk2<br>H1(<br>) =<br>Z</p><p>u2dx +<br>Z</p><p>jruj2dx<br>c2<br>Z</p><p>jruj2dx +<br>Z</p><p>jruj2<br>= (c2 + 1)<br>Z</p><p>jruj2<br>= (c2 + 1)kuk2<br>H1<br>0 (<br>);<br>which implies<br>kukH1(<br>) (c2 + 1)kukH1<br>0 (<br>) and thus<br>kukH1(<br>) kukH1<br>0 (<br>); =<br>1<br>(c2 + 1)<br>: (1.3.6)<br>Therefore, from equation (1.3.5) and (1.3.6) we obtain<br>kukH1(<br>) kukH1<br>0 (<br>) kukH1(<br>).<br>Therefore, the two norms are equivalent on H1<br>0 (<br>).<br>Theorem 1.3.10 [6] Let<br>be smooth in RN;N 2 and D(<br>) = fu j<br>: u 2<br>D(RN)g.<br>D(<br>) = H1(<br>).<br>Then, : D(<br>) ! L2(@<br>) is continuous with the H1(<br>) norm. Hence, is exten-<br>sible by continuity over H1(<br>). i.e<br>: H1(<br>) ! L2(@<br>) is continuous<br>u ! @u = u [email protected]<br>.<br>Moreover, there exists &gt; 0 such that<br>Z<br>@</p><p>u2d 2kukH1(<br>); for all u 2 H1(<br>):<br>13<br>Application<br>Let<br>be smooth and connected in RN. Dene<br>^ V = fu 2 H1(<br>) :<br>Z<br>@</p><p>ud = 0g:<br>Then ^ V is closed in H1(<br>).<br>To see this, let (un)n1 be a sequence in ^ V such that un ! u in H1(<br>).<br>Since (un)n1 ^ V , then Z<br>@</p><p>und = 0:<br>Thus, we obtain that<br>Z<br>@</p><p>jun ô€€€ uj2d 2kun ô€€€ ukH1(<br>):<br>But un ! u in H1(<br>), thus kun ô€€€ ukH1(<br>) ! 0 as n ! 1. Which implies<br>Z<br>@</p><p>jun ô€€€ uj2d ! 0 as n ! 1:<br>But<br>Z<br>@</p><p>jun ô€€€ ujd (<br>Z<br>@</p><p>jun ô€€€ uj2d)<br>1<br>2 (mes(@<br>))<br>1<br>2 :<br>Hence, since mes(@<br>) &gt; 0 we have<br>Z<br>@</p><p>jun ô€€€ ujd ! 0 in L1(<br>):<br>And we obtan that<br>Z<br>@</p><p>und !<br>Z<br>@</p><p>ud:<br>But Z<br>@</p><p>und = 0:<br>Then by uniqueness of limit we obtain that<br>Z<br>@</p><p>ud = 0:<br>14<br>Hence u 2 ^ V and therefore ^ V is closed.<br>Theorem 1.3.11 [6] (Rellich Theorem) If<br>is smooth, then H1(<br>) ,! L2(<br>) is<br>compact. Moreover, if (un)n1 is a bounded sequence in H1(<br>), then there exists a<br>subsequence (unk)k1 of (un)n1 such that (unk)k1 converges in L2(<br>).<br>Application<br>Let<br>be smooth and connected in RN. Dene<br>V = fu 2 H1(<br>) :<br>Z</p><p>u = 0g:<br>Then, Poincare’s inequality is true on V . Thus, there exists c &gt; 0 such that<br>Z</p><p>u2<br>Z</p><p>jruj2; for all u 2 V:<br>We proceed by contradiction. Suppose for all n 2 N there exists (un) 2 V such that<br>Z</p><p>u2<br>n &gt; (<br>p<br>n)2<br>Z</p><p>jrunj2;<br>thus<br>Z</p><p>u2<br>n &gt; n<br>Z</p><p>jrunj2:<br>But<br>Z</p><p>u2<br>n +<br>Z</p><p>jrunj2<br>Z</p><p>u2<br>n &gt; n<br>Z</p><p>jrunj2:<br>Hence,<br>kunkH1(<br>) &gt; n<br>Z</p><p>jrunj2: (1.3.7)<br>Let vn =<br>un<br>kunkH1(<br>)<br>. Then kvnkH1(<br>) = 1, for all n 1.<br>Since (vn)n1 is bounded in H1(<br>). Then by Rellich Theorem, there exists a subsequence<br>(vnk)k1 of (vn)n1 and f 2 L2(<br>) such that vnk ! f in L2(<br>).<br>Multiplying equation (1.3.7) by<br>1<br>kunk2<br>H1(<br>)<br>, we obtain that<br>n<br>1<br>kunk2<br>H1(<br>)<br>Z</p><p>jrunj2 &lt; 1; for all n 1:<br>15<br>Which implies that<br>Z</p><p>jrvnj2 &lt;<br>1<br>n<br>; for all n 1:<br>Thus Z</p><p>jrvnj2 ! 0 asn ! 1:<br>And hence Z</p><p>jrvnk j2 ! 0 as k ! 1:<br>Then, for all i = 1; 2; :::;N<br>@vnk<br>@xi<br>! 0 in L2(<br>).<br>But vnk ! f in L2(<br>) as k ! 1 and since L2(<br>) D0(<br>), we obtain that<br>vnk ! f in D0(<br>) and<br>@vnk<br>@xi<br>! 0 in D0(<br>).<br>And by convergence in D0(<br>), we have that<br>@vnk<br>@xi<br>!<br>@f<br>@xi<br>! in D0(<br>). Thus, by<br>uniqueness of limits<br>@f<br>@xi<br>= 0, for all i = 1; 2; :::;N. And therefore f is constant.<br>Thus f = ~c and by the above argument, we have that vnk ! ~c in H1(<br>).<br>But V is closed and vnk 2 V , then ~c 2 V . It implies that<br>Z</p><p>~cdx = 0<br>and thus ~c = 0. Hence, vnk ! 0 in H1(<br>) as k ! 1.<br>But kvnkkH1(<br>) = 1, a contracdiction. Therefore, the claim is true.<br>Denition 1.3.12 More generally, we dene for every 1 p &lt; 1 and for m 0,<br>the Sobolev spaces<br>Wm;p(<br>) = ff 2 Lp(<br>) : Df 2 Lp(<br>); jj mg<br>endowed with the following norm<br>kfkWm;p(<br>) = kfkp<br>Lp(<br>) + (jjmkDfkp<br>LP (<br>))<br>1<br>p .<br>We dene<br>Wm;q<br>0 = D(<br>) jWm;q(<br>) .<br>Thus, Wm;q<br>0 is the closure of D(<br>) with respect to the norm k:kWm;q(<br>).<br>When q = 2, we write Hm(<br>) = Wm;2(<br>) and Hm<br>0 (<br>) = Wm;2<br>0 (<br>).<br>For m = 0 we have that<br>W0;q(<br>) = Lq(<br>).<br>Theorem 1.3.13 [2] Suppose<br>is smooth, then<br>Wm;q<br>0 (<br>) := ff 2 Wm;q(<br>) : f = Df = ::: = :::Dmô€€€1f = 0 on @<br>g.<br>16<br>For p = 2, we obtain that<br>Wm;2<br>0 (<br>) := ff 2 Wm;2(<br>) : f = Df = ::: = Dmô€€€1f = 0 on @<br>g.<br>Theorem 1.3.14 [6] Wm;p(<br>) is Banach space.<br>Proof.<br>Let (fn)n1 be a Cauchy in Wm;q(<br>). Let &gt; 0 be given, then there exists n0 2 N<br>such that<br>kfn ô€€€ fkkWm;q(<br>) &lt; , for all n; k n0.<br>Then,<br>(kfn ô€€€ fkkq<br>Lq(<br>) +<br>P<br>jjmkDfn ô€€€ Dfkkq<br>Lq(<br>))<br>1<br>q &lt; , for all n; k n0.<br>And<br>kfn ô€€€ fkkq<br>Lq(<br>) +<br>P<br>jjmkDfn ô€€€ Dfkkq<br>Lq(<br>) &lt; q, for all n; k n0.<br>Consequently,<br>kfn ô€€€ fkkq<br>Lq(<br>) &lt; q and<br>P<br>jjmkDfn ô€€€ Dfkkq<br>Lq(<br>) &lt; q, for all n; k n0,<br>thus<br>kfn ô€€€ fkkLq(<br>) &lt; and kDfn ô€€€ DfkkLq(<br>) &lt; , for all n; k n0.<br>Hence, (fn)n1 and (Dfn)n are Cauchy sequences in Lq(<br>) and since Lq(<br>) is<br>complete, then there exists f; fi 2 Lq(<br>) such that<br>fn ô€€€! f in Lq(<br>) as n ô€€€! 1 and Dfn ô€€€! fi in Lq(<br>) as n ô€€€! 1.<br>But Lq(<br>) D0(<br>), we obtain that<br>fn ô€€€! f in D0(<br>) as n ô€€€! 1 and Dfn ô€€€! Df as n ô€€€! 1 in D0(<br>)<br>By uniqueness of limit we obtain that Df = fi in D0(<br>). Thus<br>fn ô€€€! f as n ô€€€! 1 in Lq(<br>) and Dfn ô€€€! Df as n ô€€€! 1 in Lq(<br>),<br>jj m. Hence<br>kfn ô€€€ fkkLq(<br>) ô€€€! 0 as n ô€€€! 1 and<br>P<br>jjmkDfn ô€€€ DfkLq(<br>) ô€€€! 0 as n ô€€€! 1<br>which implies that kfn ô€€€ fkWm;q(<br>) ô€€€! 0 as n ô€€€! 1. Thus,<br>f 2 Wm;q(<br>) and kfn ô€€€ fkWm;q(<br>) ô€€€! 0 as n ô€€€! 1 in Wm;q(<br>).<br>Therefore, Wm;q(<br>) is a Banach space.<br>Theorem 1.3.15 [6] (Green’s Formula)<br>Let<br>be smooth in Rn, u 2 H2(<br>) and v 2 H1(<br>). Then,<br>Z</p><p>rurv = ô€€€<br>Z</p><p>uv +<br>Z<br>@(<br>)<br>@u<br>@n<br>vd; n 2<br>17<br>where<br>@u<br>@n<br>denotes the normal derivatives dened by<br>@u<br>@n<br>= ru:~n and ~n denote the<br>normal vector.<br>Denition 1.3.16 The bilinear form a : H H ! R is coercive on H if there<br>exists &gt; 0 such that<br>a(v; v) kvk2, for all v 2 H<br>Example<br>Let<br>be smooth and connected with @<br>= ô€€€0 [ ô€€€1. Dene<br>H = fu 2 H1(<br>) : u jô€€€0= 0g.<br>Then, the bilinear form<br>a(u; v) =<br>Z</p><p>rurv<br>is coercive on H.<br>To see this, we proceed by contradiction. suppose it is not coercive then for all n 1<br>there exists (un)n 2 H such that<br>a(un; un) &lt; 1<br>nkunk2<br>H1(<br>).<br>Thus, Z</p><p>jrunj2 &lt;<br>1<br>n<br>kunk2<br>H1(<br>): (1.3.8)<br>Let vn =<br>un<br>kunkH1(<br>)<br>. Then, kvnkH1(<br>) = 1 Multiplying equation (1.3.8) by<br>1<br>kunk<br>, we<br>obtain that<br>Z</p><p>jrvnj2 &lt;<br>1<br>n<br>:<br>Which implies that Z</p><p>jrvnj2 ! 0<br>in L2(<br>): But jvnj = 1, hence (vn)n1 is bounded and by Rellich theorem there exists<br>a subsequence (vnk)k1 (vn)n1 such that (vnk) ! g in L2(<br>). Thus, (vnk) ! g in<br>D0(<br>) and<br>@vnk<br>@xi<br>!<br>@g<br>@xi<br>in D0(<br>). By uniquness of limit in D0(<br>). Thus,<br>@g<br>@xi<br>= 0.<br>Since<br>is connected we have that g = ^c, a constant. Thus, vnk ! ^c in H1(<br>). By<br>Trace theorem we obtain that<br>vnk [email protected]<br>! ^c in L2(@<br>).<br>Thus<br>vnk jô€€€0! ^c in L2(ô€€€0).<br>18<br>Hence Z<br>ô€€€0<br>jvnk j2d ! (^c)2mes(ô€€€0):<br>But Z<br>ô€€€0<br>jvnk j2d ! 0:<br>Therefore, (^c)2mes(ô€€€0) = 0. Since mes(ô€€€0) &gt; 0, then ^c = 0. And hence vnk ! 0 in<br>H1(<br>).<br>But kvnkkH1(<br>) = 1, a contradiction. Therefore the bilinear form is coercive on H.<br>Denition 1.3.17 A bilinear form a : H H ô€€€! R is said to be continuous if<br>there exists a constant c &gt; 0 such that<br>ja(u; v)j ckukkvk, for u; v 2 H<br>Example<br>The bilinear form a : H1(<br>) H1(<br>) ! R dened by<br>a(u; v) =<br>Z</p><p>rurv +<br>Z<br>@</p><p>(x)u(x)v(x)d is continuous; 2 L1(@<br>):<br>To see this we apply Cauchy schwartz inequality. Let u; v 2 H1(<br>), thus<br>ja(u; v)j = j<br>Z</p><p>rurv +<br>Z<br>@</p><p>(x)u(x)v(x)dj</p><p>Z</p><p>jrurvj +<br>Z<br>@</p><p>j(x)u(x)v(x)jd<br>(<br>Z</p><p>jruj2)<br>1<br>2 (<br>Z</p><p>jrvj2)<br>1<br>2 + jj<br>Z<br>@</p><p>ju(x)v(x)jd<br>kukL2(<br>)kvkL2(<br>) + kk1kukL2(@<br>)kvkL2(@<br>)<br>kukH1(<br>)kvkH1(<br>) + 2kk1kukH1(<br>)kvkH1(<br>)<br>= (1 + 2kk1)kukH1(<br>)kvkH1(<br>):<br>Take c = (1 + 2kk1), then<br>ja(u; v)j ckukH1(<br>)kvkH1(<br>).<br>Therefore, a is continuous.<br>19</p> <br><p></p>

Blazingprojects Mobile App

📚 Over 50,000 Project Materials
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Project Journal Publishing
🎓 Undergraduate/Postgraduate
📥 Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Mathematics. 2 min read

Application of Machine Learning in Predicting Stock Prices...

The project topic, "Application of Machine Learning in Predicting Stock Prices," explores the utilization of machine learning techniques to forecast s...

BP
Blazingprojects
Read more →
Mathematics. 4 min read

Applications of Machine Learning in Predicting Stock Market Trends...

The research project on "Applications of Machine Learning in Predicting Stock Market Trends" aims to explore the integration of machine learning techn...

BP
Blazingprojects
Read more →
Mathematics. 2 min read

Analyzing the Applications of Machine Learning Algorithms in Predicting Stock Prices...

The project topic "Analyzing the Applications of Machine Learning Algorithms in Predicting Stock Prices" involves the exploration of the utilization o...

BP
Blazingprojects
Read more →
Mathematics. 3 min read

Applications of Machine Learning in Predicting Stock Prices: A Mathematical Approach...

The project topic "Applications of Machine Learning in Predicting Stock Prices: A Mathematical Approach" delves into the realm of finance and data sci...

BP
Blazingprojects
Read more →
Mathematics. 4 min read

Applications of Differential Equations in Finance and Economics...

The project on "Applications of Differential Equations in Finance and Economics" focuses on the utilization of mathematical concepts, particularly dif...

BP
Blazingprojects
Read more →
Mathematics. 4 min read

Exploring the Applications of Differential Equations in Population Dynamics...

No response received....

BP
Blazingprojects
Read more →
Mathematics. 2 min read

Applications of Machine Learning in Predicting Stock Market Trends...

The project on "Applications of Machine Learning in Predicting Stock Market Trends" focuses on the utilization of machine learning techniques to forec...

BP
Blazingprojects
Read more →
Mathematics. 4 min read

Application of Machine Learning in Predicting Stock Prices...

The project topic "Application of Machine Learning in Predicting Stock Prices" focuses on the utilization of advanced machine learning algorithms to f...

BP
Blazingprojects
Read more →
Mathematics. 4 min read

Application of Machine Learning in Predicting Stock Market Trends...

The research project titled "Application of Machine Learning in Predicting Stock Market Trends" focuses on utilizing machine learning techniques to fo...

BP
Blazingprojects
Read more →
WhatsApp Click here to chat with us