Variational inequality in hilbert spaces and their applications
Table Of Contents
<p>
</p><p>Acknowledgment i<br>Certication ii<br>Approval iii<br>Dedication v<br>Abstract vi<br>Introduction viii<br>
Chapter ONE
1<br>1 Linear Functional Analysis 1<br>1.1 Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br>1.2 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br>1.3 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br>2 Variational Inequalities in RN 20<br>2.1 Basic Theorems and Denition about Fixed point . . . . . . . . . . . 20<br>2.2 First Theorem about variational inequalities . . . . . . . . . . . . . . 21<br>2.3 Some problems leading to variational inequality . . . . . . . . . . . . 24<br>3 Variational Inequality in Hilbert Spaces 30<br>3.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br>3.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br>4 CONCLUSION 38</p><p> </p>
<br><p></p>
Project Abstract
<p>
</p><p>The study of variational inequalities frequently deals with a mapping F from a vector<br>space X or a convex subset of X into its dual X0 . Let H be a real Hilbert space<br>and a(u; v) be a real bilinear form on H. Assume that the linear and continuous<br>mapping A H ô€€€! H0 determines a bilinear form via the pairing a(u; v) = hAu; vi.<br>Given K H and f 2 H0 . Then, Variational inequality(VI) is the problem of<br>nding u 2 K such that a(u; v ô€€€ u) hf; v ô€€€ ui, for all v 2 K. In this work, we<br>outline some results in theory of variational inequalities. Their relationships with<br>other problems of Nonlinear Analysis and some applications are also discussed<br>Keywords<br>Sobolev spaces, Variational inequalities,Hilbert Spaces, Elliptic variational inequalities</p><p> </p>
<br><p></p>
Project Overview
<p>
</p><p>Linear Functional Analysis<br>The aim of this Chapter is to recall basic results from functional analysis and Distribution<br>theory. The chapter is divided into three sections. The rst section introduces<br>Hilbert spaces and some basic properties of Hilbert spaces. The second section introduces<br>basic concept of Distribution theory and the last section deals with basic<br>results about Sobolev spaces that are of important in the remaining chapters.<br>1.1 Hilbert Spaces<br>Let us recall some denitions, theorems, and elementary properties on Hilbert<br>spaces.<br>Denition 1.1.1 Let E be a linear space over K, (K = R or C). An inner product<br>on E is a function<br>h:; :i : E E ô€€€! K<br>such that the following are satised, for x; y; z 2 E; ; 2 K:<br>(i) hx; xi 0 and hx; xi = 0 if and only if x = 0<br>(ii) hx; yi = hx; yi<br>(iii) hx + y; zi = hx; zi + hy; zi.<br>The pair (E; h:; :i) is called an inner product space.<br>Remark 1.1.2 A complete inner product space is called a Hilbert space.<br>Examples<br>1 Euclidean space: The space RN is a Hilbert space with the inner product<br>dened by<br>hx; yi =<br>PN<br>i=1 xiyi<br>where, x = (x1; x2; :::; xN) and y = (y1; y2; :::; yN):<br>We obtain that<br>1<br>kxk =<br>p<br>hx; xi = (<br>PN<br>i=1 x2i<br>)<br>1<br>2 .<br>2 Space L2(<br>).<br>L2(<br>) := ff :<br>ô€€€! R : f is measurablbe and<br>Z</p><p>f2dx < 1g<br>where<br>is an open set in RN, is a Hilbert space with the inner product dened by<br>hf; gi =<br>Z</p><p>f(x)g(x)dx;<br>and<br>kfk = (<br>Z</p><p>jf(x)j2dx)<br>1<br>2 :<br>Proposition 1.1.3 [2] (Cauchy-Schwart’s Inequality) Let E be an inner prod-<br>uct space. For arbitary x; y 2 E we have<br>jhx; yij2 hx; xihy; yi<br>Proof. Let x; y 2 E be arbitrary. Take z 2 C with jzj = 1 and let t 2 R. Then,<br>0 htzx + y; tzx + yi<br>= htzx; tzxi + htzx; yi + hy; tzxi + hy; yi<br>= t2zzhx; xi + tzhx; yi + tzhy; xi + hy; yi<br>= t2jzjhx; xi + tzhx; yi + tzhx; yi + hy; yi<br>= t2hx; xi + 2tRe(zhx; yi) + hy; yi<br>t2hx; xi + 2tjzhx; yij + hy; yi<br>= t2hx; xi + 2tjzjjhx; yij + hy; yi<br>= t2hx; xi + 2tjhx; yij + hy; yi: (1.1.1)<br>t2hx; xi + 2tjhx; yij + hx; xi is a quadratic function with variable t 2 R. Since,<br>t2hx; xi + 2tjhx; yij + hy; yi 0, for arbitrary t 2 R,<br>Hence,<br>jhx; yij2 hx; xihy; yi, for all x; y 2 E.<br>Theorem 1.1.4 [2] Let h:; :i be an inner product on E, then the mapping<br>x 7ô€€€! kxk =<br>p<br>hx; xi<br>is a norm on E.<br>Proof.<br>Let x; y 2 E be arbitrary. From the denition of the inner product, we have<br>2<br>hx; xi = 0 , x = 0,<br>hence<br>kxk2 = hx; xi = 0 , x = 0.<br>Also,<br>hx; xi = jjhx; xi.<br>And<br>kxk =<br>p<br>hx; xi<br>=<br>p<br>jj2hx; xi<br>= jj<br>p<br>hx; xi<br>= kxk:<br>Let x; y 2 E. Then,<br>kx + yk = hx + y; x + yi<br>= hx; xi + hx; yi + hy; xi + hy; yi<br>= kxk2 + 2Re(hx; yi) + kyk2<br>kxk2 + 2jhx; yij + kyk2<br>kxk2 + 2<br>p<br>(hx; xihy; yi) + kyk2<br>= kxk2 + 2(kxk + kyk) + kyk2<br>= (kxk + kyk)2:<br>Denition 1.1.5 Let E be a linear space and F E is said to be convex if for each<br>x; y 2 F and 2 [0; 1] we have<br>x + (1 ô€€€ )y 2 E.<br>Proposition 1.1.6 [4] (Parallelogram Law) Let E be an inner product space,<br>then for x; y 2 E<br>kx + yk2 + kx ô€€€ yk2 = 2(kxk2 + kyk2).<br>Theorem 1.1.7 [4] Let H denote a real Hilbert space and let K be a closed, convex<br>subset of H. Then for each x 2 H there exists unique y 2 K such that<br>kx ô€€€ yk = inffkx ô€€€ k : 2 Kg: (1.1.2)<br>Proof.<br>Let k 2 K be a minimizing sequence such that<br>lim<br>k!1<br>kk ô€€€ xk = d = inf2Kk ô€€€ xk.<br>Since H is a Hilbert Space, then by the Parallelogram Law, we have<br>kx + yk2 + kx ô€€€ yk2 = 2(kxk2 + kyk2), for all x; y 2 H.<br>3<br>Thus,<br>kk ô€€€ pk2 + kk + pk2 = 2(kkk2 + kpk2); for k; p 2 K.<br>By convexity of K, we have<br>1<br>2k + (1 ô€€€ 1<br>2 )p = 1<br>2 (k + p) 2 K.<br>But d = inf2Kkx ô€€€ k kx ô€€€ k, for all 2 K.<br>Take = 1<br>2 (k + p). Then,<br>d kx ô€€€<br>1<br>2<br>(k + p)k<br>) d2 kx ô€€€<br>1<br>2<br>(k + p)k2<br>) ô€€€d2 ô€€€kx ô€€€<br>1<br>2<br>(k + p)k2:<br>Now, using the Parallelogram Law and setting y = xô€€€k 2 H and x = xô€€€p 2 H,<br>we obtain that<br>0 kk ô€€€ pk2<br>= 2kx ô€€€ kk2 + 2kx ô€€€ pk2 ô€€€ k2x ô€€€ (k + p)k2<br>= 2kx ô€€€ kk2 + 2kx ô€€€ pk2 ô€€€ 4kx ô€€€<br>1<br>2<br>(k + p)k2<br>2kx ô€€€ kk2 + 2kx ô€€€ pk2 ô€€€ 4d2:<br>But lim<br>k!1<br>kx ô€€€ kk = d. Then,<br>2kx ô€€€ kk2 + 2kx ô€€€ pk2 ô€€€ 4d2 ô€€€! 0 as n ô€€€! 1.<br>Consequently,<br>kk ô€€€ pk2 ô€€€! 0 as n ô€€€! 1<br>) kk ô€€€ pk ô€€€! 0 as n ô€€€! 1<br>Hence, (k)k0 is Cauchy sequence in K. Since H is a Hilbert space, then there<br>exists ^x 2 H such that<br>k ô€€€! ^x.<br>But K is a closed subset of H and k 2 K, thus ^x 2 K.<br>Therefore,<br>kx ô€€€ ^xk = lim<br>k!1<br>kx ô€€€ kk = d.<br>For uniqueness: Let ^x; ^y 2 K such that<br>kx ô€€€ ^xk = inf2Kkx ô€€€ k<br>and<br>kx ô€€€ ^yk = inf2Kkx ô€€€ k.<br>4<br>By the Parallelogram law and convexity of K, we obtain<br>0 k^x ô€€€ ^yk<br>= 2kx ô€€€ ^xk2 + 2kx ô€€€ ^yk2 ô€€€ 4kx ô€€€<br>1<br>2<br>(^x ô€€€ ^y)k2<br>2d2 + 2d2 ô€€€ 4d2 = 0:<br>Then k^x ô€€€ ^yk = 0 , ^x = ^y. Hence, there is a unique y 2 K such that<br>kx ô€€€ yk = inf2Kkx ô€€€ k.<br>Remark 1.1.8 The point y 2 H satisfying (1.1.2) is called a projection of x on K<br>and y = PKx.<br>Corollary 1.1.9 [2]<br>Let K be a closed, convex subset of a Hilbert space H. Then the operator PK is<br>nonexpansive, that is<br>kPKx ô€€€ PKx0k kx ô€€€ x0k, for all x; x0 2 H.<br>Proof.<br>Let x; x0 2 H such that y = PKx, y0 = PKx0 . Then, for y; y0 2 K we have<br>hy; ô€€€ yi hx; ô€€€ yi, for all 2 K,<br>and<br>hy0 ; ô€€€ y0i hx0 ; ô€€€ y0i , for all 2 K.<br>Setting = y0 and = y in the rst and second inequality respectively we obtain<br>hy; y0 ô€€€ yi hx; y0 ô€€€ yi and hy0 ; y ô€€€ y0i hx0 ; y ô€€€ y0i.<br>Adding we obtain that,<br>hy; y0 ô€€€ yi + hy0 ; y ô€€€ y0i hx; y0 ô€€€ yi + hx0 ; y ô€€€ y0i,<br>hence<br>hy; y0 ô€€€ yi ô€€€ hy0 ; y0 ô€€€ yi hx; y0 ô€€€ yi ô€€€ hx0 ; y0 ô€€€ yi,<br>and<br>hy ô€€€ y0 ; y0 ô€€€ yi hx ô€€€ x0 ; y0 ô€€€ yi.<br>Consequently,<br>ô€€€hy ô€€€ y0 ; y ô€€€ y0i hx ô€€€ x0 ; y0 ô€€€ yi.<br>Then,<br>hy ô€€€ y0 ; y ô€€€ y0i hx ô€€€ x0 ; y ô€€€ y0i<br>5<br>ky ô€€€ y<br>0<br>k2 = hy ô€€€ y<br>0<br>; y ô€€€ y<br>0<br>i<br>hx ô€€€ x<br>0<br>; y ô€€€ y<br>0<br>i<br>jhx ô€€€ x<br>0<br>; y ô€€€ y<br>0<br>ij<br>kx ô€€€ x<br>0<br>kky ô€€€ y<br>0<br>k;<br>and thus<br>ky ô€€€ y0k kx ô€€€ x0k.<br>Therefore,<br>kPKx ô€€€ PKx0k kx ô€€€ x0k, for all x; x0 2 H:<br>Theorem 1.1.10 [8] Let K be a closed convex subset of a real Hilbert space H.<br>Then y = PKx, the projection of x on K, if and only if y 2 K such that<br>hy; ô€€€ yi hx; ô€€€ yi, for all 2 K:<br>Proof.<br>Let x 2 H and y = PKx. Since K is convex, then<br>t + (1 ô€€€ t)y = y + t( ô€€€ y) 2 K, for all 2 K, 0 t 1.<br>Set (t) = kx ô€€€ (y + t( ô€€€ y))k2, 0 t 1.<br>(t) = kx ô€€€ y ô€€€ t( ô€€€ y)k2<br>= kx ô€€€ yk2 ô€€€ 2tRehx ô€€€ y; ô€€€ yi + t2k ô€€€ yk2<br>= kx ô€€€ yk2 ô€€€ 2thx ô€€€ y; ô€€€ yi + t2k ô€€€ yk2:<br>Then,<br>0(t) = ô€€€2hx ô€€€ y; ô€€€ yi + 2tk ô€€€ yk2,<br>thus, 0(0) = ô€€€2hx ô€€€ y; ô€€€ yi. Therefore, the function attains its minimum at<br>t = 0. Thus,</p><p>0<br>(0) 0 , hx ô€€€ y; ô€€€ yi 0; 2 K<br>, hx; ô€€€ yi ô€€€ hy; ô€€€ y > 0<br>, hy; ô€€€ yi hx; ô€€€ yi; 2 K:<br>Let y 2 K. Then,<br>hy; ô€€€ yi hx; ô€€€ yi, 2 K.<br>Thus,<br>hy; ô€€€ yi ô€€€ hx; ô€€€ yi 0<br>and<br>hy ô€€€ x; ô€€€ yi 0<br>6<br>0 hy ô€€€ x; ô€€€ yi<br>= hy ô€€€ x; ( ô€€€ x) + (x ô€€€ y)i<br>ô€€€kx ô€€€ yk2 + hy ô€€€ x; ô€€€ xi:<br>Therefore,<br>ky ô€€€ xk2 hy ô€€€ x; ô€€€ xi<br>jhy ô€€€ x; ô€€€ xij<br>ky ô€€€ xkk ô€€€ xk:<br>Thus,<br>ky ô€€€ xk k ô€€€ xk.<br>Hence for each x 2 H there exists y 2 K such that<br>ky ô€€€ xk = inf2Kk ô€€€ xk.<br>Corollary 1.1.11 [2] Let H be a real Hilbert space and K a closed subspace of H.<br>Then, for arbitrary vector x 2 H, there exist a unique vector ~y 2 K such that<br>kx ô€€€ ~yk kx ô€€€ yk, for all y 2 K.<br>Theorem 1.1.12 [2] (Reiesz Theorem) Let H be a Hilbert space. Then H0 = H,<br>where H0 denote the dual of H.<br>Theorem 1.1.13 [4] (Riesz Representation Theorem) Let H be a Hilbert<br>space and let f be a bounded linear functional on H. Then, there exists a unique<br>vector of x0 2 H such that<br>f(x) = hx; x0i, for each x 2 H.<br>Moreover, kfk = kx0k.<br>1.2 Function spaces<br>We recall some denitions of function spaces used in this thesis<br>Denition 1.2.1 An open connected set<br>RN is called a domain. By<br>, we<br>denote the closure of<br>; @<br>is the boundary and<br>o is the interior of<br>.<br>x = (x1; x2; :::; xN) 2 RN and = (1; 2; :::; N) 2 N is a multi-index.<br>jj = 1 + 2 + ::: + N<br>Du :=<br>@jju<br>@x1<br>1 @x2<br>2 :::@xN<br>N<br>ru = (@1u; @2u; :::; @Nu)<br>jruj = (<br>XN<br>j=1<br>[email protected])<br>1<br>2<br>7<br>Denition 1.2.2 Let f :<br>ô€€€! R be continuous. We dene support of f by<br>supp(f) = fx 2<br>: f(x) 6= 0g.<br>The function is said to be of compact support on<br>if the support is a compact set<br>contained inside<br>. The space of test functions in<br>is denoted by D(<br>) and dened<br>D(<br>) := ff :<br>ô€€€! R;C1 : support(f ) is compactg<br>= ff 2 C1(<br>) : supp(f) is compactg<br>Denition 1.2.3 Let ( n)n1 be a sequence in D(<br>) and 2 D(<br>). Then, n !<br>in D(<br>) if<br>(i) there exists a compact set K<br>such that, supp( n) K, for all n 1.<br>(ii) D n ! D uniformly on K as n ! 1 and for all 2 Nn.<br>Denition 1.2.4 A distribution on<br>is any continuous linear mapping T : D(<br>) !<br>R. The set of all distribution on<br>is denoted by D0(<br>).<br>Means that if<br>n ! 0 in D(<br>) , then (T; n) ! 0 in R.<br>Example.<br>The map : D(R) ! R dened by h; i = ( ) = (0)<br>is a distribution. It is usually called Dirac distribution.<br>To see this, we have that is linear, since for 1; 2 2 D(<br>) and 2 R,<br>( 1 + 2) = h; 1 + 2i<br>= ( 1 + 2)(0)<br>= 1(0) + 2(0)<br>= h; 1i + h; 2i<br>= h; 1i + h; 2i<br>= ( 1) + ( 2):<br>Hence, is linear.<br>Let f ngn1 D(R) such that n ! 0 as n ! 1 on D(R).<br>But n ! 0 on D(R) implies that there exists a compact set K R such that<br>supp( n) K and for all j 2 N, (j)<br>n ! 0 uniformly on R.<br>Thus, 0 j n(0)j supx2Kj n(x)j! 0 as n ! 1. And then h; ni = n(0) ! 0<br>as n ! 1. Therefore, is continuous and hence is a distribution.<br>Denition 1.2.5 A funtion f :<br>! R is said to be locally integrable if for any<br>compact set, K<br>, we have that<br>Z<br>K<br>jf(x)jdx < 1:<br>8<br>The collection of all locally integrable funtionals is denoted by L1l<br>oc(<br>). For any<br>f 2 L1l<br>oc(<br>), f gives a distribution Tf dened by<br>(Tf ; ) =<br>Z</p><p>f(x) (x)dx; for all 2 D(<br>):<br>Remark 1.2.6 L1l<br>oc(<br>) D0(<br>).<br>Theorem 1.2.7 [6] Let T 2 D0(<br>) be a distribution on an open set<br>in RN, and<br>, a multi index. Then, for all 2 Nn, n 1<br>(DT; ) = (ô€€€1)jj(T;D ), D 2 D0(<br>), for all 2 D(<br>).<br>Denition 1.2.8 By Ck(<br>), we denote the space of k times dierentiable (real<br>valued) functions on<br>.<br>Denition 1.2.9 [2] By Ck;(<br>), 0 < < 1, we indicate the functions k times<br>continuously dierentiable in<br>whose derivative of order k are continuous , 0 <<br>< 1.<br>1.3 Sobolev spaces<br>Denition 1.3.1 Let<br>be open set in RN. Let p 2 R with 1 p < +1.<br>LP (<br>) := ff :<br>ô€€€! R; measurable :<br>Z</p><p>jfjpd < +1g<br>where is a measure on<br>and<br>kfkp := (<br>Z</p><p>jfjpd)<br>1<br>p<br>L1(<br>) := ff :<br>ô€€€! R : f is essentially boundedg, i.e f 2 L1(<br>) , there exists<br>c > 0 such that jf(x) c a.e on<br>and kfk1 = inffc > 0: jf(x)j c a.e on<br>g.<br>Theorem 1.3.2 [6] LP (<br>)is a Banach space for 1 p 1.<br>Proposition 1.3.3 [6] (Holder’s Inequality) Let f 2 Lp(<br>); g 2 Lq(<br>) such that<br>1<br>p + 1<br>q = 1. Then fg 2 L1(<br>). Moreover,<br>Z</p><p>jfgj (<br>Z</p><p>jfjp)<br>1<br>p (<br>Z</p><p>jgjq)<br>1<br>q = kfkpkkgkq: (1.3.1)<br>Denition 1.3.4 The space Hm(<br>) is called Sobolev space of order m and it is<br>dened as<br>Hm(<br>) := ff 2 L2(<br>) : Df 2 L2(<br>); jj mg,<br>endowed with the inner product<br>< f; g >Hm(<br>)=< f; g >L2(<br>) +jm < Df;Dg >L2(<br>) : (1.3.2)<br>9<br>and<br>kfkHm(<br>) = (kfkL2(<br>) + jjmjDfj2)<br>1<br>2 , for all f; g 2 Hm(<br>).<br>Theorem 1.3.5 [6] The spaces Hm(<br>) , m 0 endowed with the inner product<br>(1.1.1) are Hilbert spaces.<br>Proof.<br>Let (fn)n1 be a Cauchy sequence in Hm(<br>). Let > 0 be given. Then, there exists<br>no 2 N such that<br>kfn ô€€€ fmkHm(<br>) for all n;m no.<br>Thus<br>kfn ô€€€ fmk2<br>L2(<br>) +<br>P<br>jjmkDfn ô€€€ Dfmk2 < 2, for all n;m no<br>which implies<br>kfn ô€€€ fmk2<br>L2(<br>) < 2 and<br>P<br>jjmkDfm ô€€€ Dfmk2 < 2, for all n;m no.<br>then<br>kfn ô€€€ fmk < and<br>P<br>jjmkDfn ô€€€ Dfmk 2, for all n;m no.<br>Thus, we obtain that (fn)n1 is a Cauchy sequence in L2(<br>) and (D(fn))n is a<br>Cauchy sequence in L2(<br>). Since L2(<br>) is complete, then there exist f; fi 2 L2(<br>)<br>such that<br>fn ô€€€! f in L2(<br>) as n ô€€€! 1 and Dfn ô€€€! fi in L2(<br>) as n ô€€€! 1.<br>Since L2(<br>) D0(<br>) we obtain that<br>fn ô€€€! f in D0(<br>) and Dfn ô€€€! fi.<br>But Df ô€€€! Df in D0(<br>) as n ô€€€! 1. By uniqueness of limit we obtain that<br>Df = fi in D0(<br>). Thus,<br>fn ô€€€! f in L2(<br>) and Dfn ô€€€! Df in L2(<br>), jj m.<br>Thus f 2 Hm(<br>) with<br>kfn ô€€€ fkL2(<br>) ô€€€! 0 and<br>P<br>jjmkDfn ô€€€ DfkL2(<br>) ô€€€! 0 an n ô€€€! 1.<br>Hence,<br>f 2 Hm(<br>) and kfn ô€€€ fkHm(<br>) ô€€€! 0 as n ô€€€! 1.<br>Therefore, Hm(<br>) is a Hilbert space.<br>For m = 1 we obtain<br>H1(<br>) := ff 2 L2(<br>) : @f<br>@xi<br>2 L2(<br>); i = 1; 2; :::;Ng<br>10<br>and on H1(<br>) we have the following inner product<br>hf; giH1(<br>) = hf; giL2(<br>) +<br>XN<br>i=1<br>h<br>@f<br>@xi<br>;<br>@g<br>@xi<br>iL2(<br>)<br>=<br>Z</p><p>fg +<br>XN<br>i=1<br>Z</p><p>@f<br>@xi<br>@g<br>@xi<br>and<br>kfkH1(<br>) =<br>q<br>hf; giH1(<br>); for all f 2 H1(<br>)<br>=<br>vuut<br>kfk2<br>L2(<br>) +<br>XN<br>i=1<br>k<br>@f<br>@xi<br>kL2(<br>):<br>Denition 1.3.6 We dene H1<br>0(<br>) := D(<br>) jH1(<br>).<br>H1<br>0(<br>) is a Hilbert space with the norm k:kH1(<br>) and we dene the norm on H1<br>0(<br>)<br>by<br>kukH1<br>0 (<br>) :=<br>sZ</p><p>jruj2:<br>Theorem 1.3.7 [6] (Poincare’s inequality) Suppose<br>is bounded. Then, there<br>exists c > 0 such that<br>Z</p><p>u2dx c2<br>Z</p><p>jruj2dx; for all u 2 H1<br>0(<br>):<br>Proof.<br>Since<br>is bounded. Then<br>Ni<br>=1[ai; bi]. We proceed this way, we rst prove it<br>in D(<br>).<br>Let ‘ 2 D(<br>) such that ‘(t; x) = ‘(t; x2; x3; :::; xN).<br>But<br>R t<br>a1<br>@<br>@s'(s; x)ds = ‘(t; x) ô€€€ ‘(a1; x) = ‘(t; x): Then using Cauchy Schwartz<br>inequality, we obtain that<br>‘2(t; x) = (<br>Z t<br>a1<br>@<br>@s<br>‘(s; x)ds)2<br>(t ô€€€ a1)<br>Z t<br>a1<br>(<br>@<br>@s<br>‘(s; x))2ds:<br>11<br>Integrating, we obtain that<br>Z</p><p>‘2(t; x)dtdx<br>Z</p><p>((t ô€€€ a1)<br>Z t<br>a1<br>(<br>@<br>@s<br>‘(s; x))2)ds)dtdx</p><p>Z</p><p>Z b1<br>a1<br>(t ô€€€ a1)(<br>@<br>@s<br>‘(s; x))2)dsdtdx<br>=<br>Z b1<br>a1<br>(t ô€€€ a1)dt<br>Z</p><p>(<br>@<br>@s<br>‘(s; x))2dsdx<br>=<br>1<br>2<br>(b1 ô€€€ a1)2<br>Z</p><p>(<br>@<br>@s<br>‘(s; x))2dsdx</p><p>1<br>2<br>(b1 ô€€€ a1)2<br>Z</p><p>jr’j2:<br>Choose c2 = 1<br>2 (b1 ô€€€ a1)2 > 0. Then<br>Z</p><p>‘2 c2<br>Z</p><p>jr’j2; for all ‘ 2 D(<br>): (1.3.3)<br>Now, let u 2 H1<br>0(<br>) = D(<br>) jH1(<br>). Then, there exist (‘p)p1 D(<br>) such that<br>k’p ô€€€ uk ! 0 as p ! 1.<br>We have Z</p><p>‘2<br>p c2<br>Z</p><p>jr’pj2: (1.3.4)<br>Z</p><p>j’p ô€€€ uj2 +<br>Z</p><p>jr(‘p ô€€€ u)j2 ! 0; as n ! 1:<br>And thus,<br>Z</p><p>‘2<br>p !<br>Z</p><p>u2and<br>Z</p><p>jr’pj2 !<br>Z</p><p>jruj2:<br>Letting p ! 1 in equation (1.3.4), we obtain that<br>Z</p><p>u2 c2<br>Z</p><p>jruj2; for all u 2 H1<br>0(<br>):<br>Theorem 1.3.8 [6] (Poincare-Wirtinger’s inequality) Suppose<br>is smooth<br>and connected, then for any u 2 H1(<br>) there exists c > 0 such that<br>Z</p><p>ju ô€€€ ^uj2 c2<br>Z</p><p>jruj2; for all u 2 H1(<br>);<br>where<br>^u =<br>1<br>mes(<br>)<br>Z</p><p>u:<br>12<br>Corollary 1.3.9 The norm k:kH1<br>0 (<br>) is equivalent to k:kH1(<br>).<br>Proof of Corollary.<br>Let u 2 H1<br>0 (<br>). Then,<br>kuk2<br>H1(<br>) = kuk2<br>L2(<br>) +<br>Z</p><p>jruj2</p><p>Z</p><p>jruj2<br>= kuk2<br>H1<br>0 (<br>):<br>Thus,<br>kukH1<br>o (<br>) kukH1(<br>): (1.3.5)<br>Now using Poincare’s inequality we obtain that<br>kuk2<br>H1(<br>) =<br>Z</p><p>u2dx +<br>Z</p><p>jruj2dx<br>c2<br>Z</p><p>jruj2dx +<br>Z</p><p>jruj2<br>= (c2 + 1)<br>Z</p><p>jruj2<br>= (c2 + 1)kuk2<br>H1<br>0 (<br>);<br>which implies<br>kukH1(<br>) (c2 + 1)kukH1<br>0 (<br>) and thus<br>kukH1(<br>) kukH1<br>0 (<br>); =<br>1<br>(c2 + 1)<br>: (1.3.6)<br>Therefore, from equation (1.3.5) and (1.3.6) we obtain<br>kukH1(<br>) kukH1<br>0 (<br>) kukH1(<br>).<br>Therefore, the two norms are equivalent on H1<br>0 (<br>).<br>Theorem 1.3.10 [6] Let<br>be smooth in RN;N 2 and D(<br>) = fu j<br>: u 2<br>D(RN)g.<br>D(<br>) = H1(<br>).<br>Then, : D(<br>) ! L2(@<br>) is continuous with the H1(<br>) norm. Hence, is exten-<br>sible by continuity over H1(<br>). i.e<br>: H1(<br>) ! L2(@<br>) is continuous<br>u ! @u = u [email protected]<br>.<br>Moreover, there exists > 0 such that<br>Z<br>@</p><p>u2d 2kukH1(<br>); for all u 2 H1(<br>):<br>13<br>Application<br>Let<br>be smooth and connected in RN. Dene<br>^ V = fu 2 H1(<br>) :<br>Z<br>@</p><p>ud = 0g:<br>Then ^ V is closed in H1(<br>).<br>To see this, let (un)n1 be a sequence in ^ V such that un ! u in H1(<br>).<br>Since (un)n1 ^ V , then Z<br>@</p><p>und = 0:<br>Thus, we obtain that<br>Z<br>@</p><p>jun ô€€€ uj2d 2kun ô€€€ ukH1(<br>):<br>But un ! u in H1(<br>), thus kun ô€€€ ukH1(<br>) ! 0 as n ! 1. Which implies<br>Z<br>@</p><p>jun ô€€€ uj2d ! 0 as n ! 1:<br>But<br>Z<br>@</p><p>jun ô€€€ ujd (<br>Z<br>@</p><p>jun ô€€€ uj2d)<br>1<br>2 (mes(@<br>))<br>1<br>2 :<br>Hence, since mes(@<br>) > 0 we have<br>Z<br>@</p><p>jun ô€€€ ujd ! 0 in L1(<br>):<br>And we obtan that<br>Z<br>@</p><p>und !<br>Z<br>@</p><p>ud:<br>But Z<br>@</p><p>und = 0:<br>Then by uniqueness of limit we obtain that<br>Z<br>@</p><p>ud = 0:<br>14<br>Hence u 2 ^ V and therefore ^ V is closed.<br>Theorem 1.3.11 [6] (Rellich Theorem) If<br>is smooth, then H1(<br>) ,! L2(<br>) is<br>compact. Moreover, if (un)n1 is a bounded sequence in H1(<br>), then there exists a<br>subsequence (unk)k1 of (un)n1 such that (unk)k1 converges in L2(<br>).<br>Application<br>Let<br>be smooth and connected in RN. Dene<br>V = fu 2 H1(<br>) :<br>Z</p><p>u = 0g:<br>Then, Poincare’s inequality is true on V . Thus, there exists c > 0 such that<br>Z</p><p>u2<br>Z</p><p>jruj2; for all u 2 V:<br>We proceed by contradiction. Suppose for all n 2 N there exists (un) 2 V such that<br>Z</p><p>u2<br>n > (<br>p<br>n)2<br>Z</p><p>jrunj2;<br>thus<br>Z</p><p>u2<br>n > n<br>Z</p><p>jrunj2:<br>But<br>Z</p><p>u2<br>n +<br>Z</p><p>jrunj2<br>Z</p><p>u2<br>n > n<br>Z</p><p>jrunj2:<br>Hence,<br>kunkH1(<br>) > n<br>Z</p><p>jrunj2: (1.3.7)<br>Let vn =<br>un<br>kunkH1(<br>)<br>. Then kvnkH1(<br>) = 1, for all n 1.<br>Since (vn)n1 is bounded in H1(<br>). Then by Rellich Theorem, there exists a subsequence<br>(vnk)k1 of (vn)n1 and f 2 L2(<br>) such that vnk ! f in L2(<br>).<br>Multiplying equation (1.3.7) by<br>1<br>kunk2<br>H1(<br>)<br>, we obtain that<br>n<br>1<br>kunk2<br>H1(<br>)<br>Z</p><p>jrunj2 < 1; for all n 1:<br>15<br>Which implies that<br>Z</p><p>jrvnj2 <<br>1<br>n<br>; for all n 1:<br>Thus Z</p><p>jrvnj2 ! 0 asn ! 1:<br>And hence Z</p><p>jrvnk j2 ! 0 as k ! 1:<br>Then, for all i = 1; 2; :::;N<br>@vnk<br>@xi<br>! 0 in L2(<br>).<br>But vnk ! f in L2(<br>) as k ! 1 and since L2(<br>) D0(<br>), we obtain that<br>vnk ! f in D0(<br>) and<br>@vnk<br>@xi<br>! 0 in D0(<br>).<br>And by convergence in D0(<br>), we have that<br>@vnk<br>@xi<br>!<br>@f<br>@xi<br>! in D0(<br>). Thus, by<br>uniqueness of limits<br>@f<br>@xi<br>= 0, for all i = 1; 2; :::;N. And therefore f is constant.<br>Thus f = ~c and by the above argument, we have that vnk ! ~c in H1(<br>).<br>But V is closed and vnk 2 V , then ~c 2 V . It implies that<br>Z</p><p>~cdx = 0<br>and thus ~c = 0. Hence, vnk ! 0 in H1(<br>) as k ! 1.<br>But kvnkkH1(<br>) = 1, a contracdiction. Therefore, the claim is true.<br>Denition 1.3.12 More generally, we dene for every 1 p < 1 and for m 0,<br>the Sobolev spaces<br>Wm;p(<br>) = ff 2 Lp(<br>) : Df 2 Lp(<br>); jj mg<br>endowed with the following norm<br>kfkWm;p(<br>) = kfkp<br>Lp(<br>) + (jjmkDfkp<br>LP (<br>))<br>1<br>p .<br>We dene<br>Wm;q<br>0 = D(<br>) jWm;q(<br>) .<br>Thus, Wm;q<br>0 is the closure of D(<br>) with respect to the norm k:kWm;q(<br>).<br>When q = 2, we write Hm(<br>) = Wm;2(<br>) and Hm<br>0 (<br>) = Wm;2<br>0 (<br>).<br>For m = 0 we have that<br>W0;q(<br>) = Lq(<br>).<br>Theorem 1.3.13 [2] Suppose<br>is smooth, then<br>Wm;q<br>0 (<br>) := ff 2 Wm;q(<br>) : f = Df = ::: = :::Dmô€€€1f = 0 on @<br>g.<br>16<br>For p = 2, we obtain that<br>Wm;2<br>0 (<br>) := ff 2 Wm;2(<br>) : f = Df = ::: = Dmô€€€1f = 0 on @<br>g.<br>Theorem 1.3.14 [6] Wm;p(<br>) is Banach space.<br>Proof.<br>Let (fn)n1 be a Cauchy in Wm;q(<br>). Let > 0 be given, then there exists n0 2 N<br>such that<br>kfn ô€€€ fkkWm;q(<br>) < , for all n; k n0.<br>Then,<br>(kfn ô€€€ fkkq<br>Lq(<br>) +<br>P<br>jjmkDfn ô€€€ Dfkkq<br>Lq(<br>))<br>1<br>q < , for all n; k n0.<br>And<br>kfn ô€€€ fkkq<br>Lq(<br>) +<br>P<br>jjmkDfn ô€€€ Dfkkq<br>Lq(<br>) < q, for all n; k n0.<br>Consequently,<br>kfn ô€€€ fkkq<br>Lq(<br>) < q and<br>P<br>jjmkDfn ô€€€ Dfkkq<br>Lq(<br>) < q, for all n; k n0,<br>thus<br>kfn ô€€€ fkkLq(<br>) < and kDfn ô€€€ DfkkLq(<br>) < , for all n; k n0.<br>Hence, (fn)n1 and (Dfn)n are Cauchy sequences in Lq(<br>) and since Lq(<br>) is<br>complete, then there exists f; fi 2 Lq(<br>) such that<br>fn ô€€€! f in Lq(<br>) as n ô€€€! 1 and Dfn ô€€€! fi in Lq(<br>) as n ô€€€! 1.<br>But Lq(<br>) D0(<br>), we obtain that<br>fn ô€€€! f in D0(<br>) as n ô€€€! 1 and Dfn ô€€€! Df as n ô€€€! 1 in D0(<br>)<br>By uniqueness of limit we obtain that Df = fi in D0(<br>). Thus<br>fn ô€€€! f as n ô€€€! 1 in Lq(<br>) and Dfn ô€€€! Df as n ô€€€! 1 in Lq(<br>),<br>jj m. Hence<br>kfn ô€€€ fkkLq(<br>) ô€€€! 0 as n ô€€€! 1 and<br>P<br>jjmkDfn ô€€€ DfkLq(<br>) ô€€€! 0 as n ô€€€! 1<br>which implies that kfn ô€€€ fkWm;q(<br>) ô€€€! 0 as n ô€€€! 1. Thus,<br>f 2 Wm;q(<br>) and kfn ô€€€ fkWm;q(<br>) ô€€€! 0 as n ô€€€! 1 in Wm;q(<br>).<br>Therefore, Wm;q(<br>) is a Banach space.<br>Theorem 1.3.15 [6] (Green’s Formula)<br>Let<br>be smooth in Rn, u 2 H2(<br>) and v 2 H1(<br>). Then,<br>Z</p><p>rurv = ô€€€<br>Z</p><p>uv +<br>Z<br>@(<br>)<br>@u<br>@n<br>vd; n 2<br>17<br>where<br>@u<br>@n<br>denotes the normal derivatives dened by<br>@u<br>@n<br>= ru:~n and ~n denote the<br>normal vector.<br>Denition 1.3.16 The bilinear form a : H H ! R is coercive on H if there<br>exists > 0 such that<br>a(v; v) kvk2, for all v 2 H<br>Example<br>Let<br>be smooth and connected with @<br>= ô€€€0 [ ô€€€1. Dene<br>H = fu 2 H1(<br>) : u jô€€€0= 0g.<br>Then, the bilinear form<br>a(u; v) =<br>Z</p><p>rurv<br>is coercive on H.<br>To see this, we proceed by contradiction. suppose it is not coercive then for all n 1<br>there exists (un)n 2 H such that<br>a(un; un) < 1<br>nkunk2<br>H1(<br>).<br>Thus, Z</p><p>jrunj2 <<br>1<br>n<br>kunk2<br>H1(<br>): (1.3.8)<br>Let vn =<br>un<br>kunkH1(<br>)<br>. Then, kvnkH1(<br>) = 1 Multiplying equation (1.3.8) by<br>1<br>kunk<br>, we<br>obtain that<br>Z</p><p>jrvnj2 <<br>1<br>n<br>:<br>Which implies that Z</p><p>jrvnj2 ! 0<br>in L2(<br>): But jvnj = 1, hence (vn)n1 is bounded and by Rellich theorem there exists<br>a subsequence (vnk)k1 (vn)n1 such that (vnk) ! g in L2(<br>). Thus, (vnk) ! g in<br>D0(<br>) and<br>@vnk<br>@xi<br>!<br>@g<br>@xi<br>in D0(<br>). By uniquness of limit in D0(<br>). Thus,<br>@g<br>@xi<br>= 0.<br>Since<br>is connected we have that g = ^c, a constant. Thus, vnk ! ^c in H1(<br>). By<br>Trace theorem we obtain that<br>vnk [email protected]<br>! ^c in L2(@<br>).<br>Thus<br>vnk jô€€€0! ^c in L2(ô€€€0).<br>18<br>Hence Z<br>ô€€€0<br>jvnk j2d ! (^c)2mes(ô€€€0):<br>But Z<br>ô€€€0<br>jvnk j2d ! 0:<br>Therefore, (^c)2mes(ô€€€0) = 0. Since mes(ô€€€0) > 0, then ^c = 0. And hence vnk ! 0 in<br>H1(<br>).<br>But kvnkkH1(<br>) = 1, a contradiction. Therefore the bilinear form is coercive on H.<br>Denition 1.3.17 A bilinear form a : H H ô€€€! R is said to be continuous if<br>there exists a constant c > 0 such that<br>ja(u; v)j ckukkvk, for u; v 2 H<br>Example<br>The bilinear form a : H1(<br>) H1(<br>) ! R dened by<br>a(u; v) =<br>Z</p><p>rurv +<br>Z<br>@</p><p>(x)u(x)v(x)d is continuous; 2 L1(@<br>):<br>To see this we apply Cauchy schwartz inequality. Let u; v 2 H1(<br>), thus<br>ja(u; v)j = j<br>Z</p><p>rurv +<br>Z<br>@</p><p>(x)u(x)v(x)dj</p><p>Z</p><p>jrurvj +<br>Z<br>@</p><p>j(x)u(x)v(x)jd<br>(<br>Z</p><p>jruj2)<br>1<br>2 (<br>Z</p><p>jrvj2)<br>1<br>2 + jj<br>Z<br>@</p><p>ju(x)v(x)jd<br>kukL2(<br>)kvkL2(<br>) + kk1kukL2(@<br>)kvkL2(@<br>)<br>kukH1(<br>)kvkH1(<br>) + 2kk1kukH1(<br>)kvkH1(<br>)<br>= (1 + 2kk1)kukH1(<br>)kvkH1(<br>):<br>Take c = (1 + 2kk1), then<br>ja(u; v)j ckukH1(<br>)kvkH1(<br>).<br>Therefore, a is continuous.<br>19</p>
<br><p></p>