Quality characteristics of underground water resources in nkanu east and nkanu west local government areas of enugu state, nigeria
Table Of Contents
<p>
Title Page ————————————————————————- i<br>Approval Page ——————————————————————- ii<br>Certification ———————————————————————- iii<br>Dedication ———————————————————————— iv<br>Acknowledgement ————————————————————– v<br>Abstract ————————————————————————— vi<br>Table of Contents ————————————————————- vii<br>List of Tables ——————————————————————– xi<br>List of Figures ——————————————————————- xii<br>
Chapter ONE
<br>1.0 Introduction—————————————————————— 1<br>1.1 Underground water quality ———————————————– 1<br>1.2 Background of Study —————————————————— 2<br>1.3 Scope of Study————————————————————– 3<br>1.4 Objective of Study ——————————————————— 4<br>
Chapter TWO
<br>2.0 Literature Review———————————————————– 5<br>2.1 Water ————————————————————————- 5<br>2.1.1 Properties of water ——————————————————- 5<br>2.1.2 Uses of Water ———————————————————— 6<br>2.2 Types of water resources————————————————– 7<br>2.2.1 Underground water —————————————————— 7<br>2.2.2 Surface water ————————————————————- 8<br>2.2.3 Water in the atmosphere ———————————————— 12<br>viii<br>2.3 Pollution ——————————————————————— 12<br>2.3.1 Water pollution ———————————————————– 13<br>2.3.1.1 Organic pollutants —————————————————– 13<br>2.3.1.2 Inorganic pollutants ————————————————— 15<br>2.3.1.3 Sediments pollutants ————————————————- 16<br>2.3.1.4 Radioactive materials ———————————————— 16<br>2.3.1.5 Thermal pollutants —————————————————- 17<br>2.3.2 Underground water pollution/pollutant —————————– 17<br>2.3.2.1 Point-source pollution ———————————————— 19<br>2.3.2.2 Non-point source pollution —————————————— 19<br>2.3.2.3 Chemical pollution —————————————————- 21<br>2.3.2.4 Biological pollution ————————————————— 22<br>2.3.2.5 Physical/Natural pollution ——————————————- 24<br>2.4 Water Analysis ————————————————————- 25<br>2.4.1 Physical examination —————————————————- 25<br>2.4.1.1 Temperature ———————————————————— 25<br>2.4.1.2 Turbidity —————————————————————- 25<br>2.4.1.3 pH————————————————————————- 27<br>2.4.1.4 Total dissolved solids ———————————————— 27<br>2.4.1.5 Conductivity ———————————————————— 28<br>2.4.1.6 Colour——————————————————————– 28<br>2.4.2 Chemical examination ————————————————– 28<br>2.4.2.1 Hardness —————————————————————- 28<br>2.4.2.2 Alkalinity—————————————————————- 30<br>2.4.2.3 Calcium—————————————————————— 30<br>2.4.2.4 Magnesium————————————————————– 31<br>2.4.2.5 Chloride —————————————————————– 31<br>2.4.2.6 Nitrate——————————————————————– 31<br>ix<br>2.4.2.7 Phosphate ————————————————————— 32<br>2.4.2.8 Potassium ————————————————————— 32<br>2.4.2.9 Sulphate —————————————————————– 33<br>2.4.2.10 Sodium—————————————————————– 33<br>2.4.2.11 Cadmium ————————————————————– 34<br>2.4.2.12 Chromium ————————————————————- 35<br>2.4.2.13 Copper—————————————————————— 36<br>2.4.2.14 Iron———————————————————————- 37<br>2.4.2.15 Lead——————————————————————— 38<br>2.4.2.16 Nickel —————————————————————— 38<br>2.4.2.17 Zinc ——————————————————————— 39<br>2.4.3 Microbiological examination —————————————– ` 39<br>
Chapter THREE
<br>3.0 Materials and Methods —————————————————- 41<br>3.1 Sample collection———————————————————– 41<br>3.2 Method of analysis ——————————————————– 43<br>3.2.1 Turbidity —————————————————————— 43<br>3.2.2 Temperature ————————————————————– 43<br>3.2.3 Colour ———————————————————————- 43<br>3.2.4 Total dissolved solid —————————————————- 43<br>3.2.5 pH ————————————————————————— 44<br>3.2.6 Conductivity ————————————————————– 44<br>3.2.7 Total alkalinity ———————————————————– 44<br>3.2.8 Total hardness ———————————————————— 45<br>3.2.9 Calcium——————————————————————– 46<br>3.2.10 Magnesium ————————————————————– 47<br>3.2.11 Chloride —————————————————————— 47<br>x<br>3.2.12 Nitrate ——————————————————————– 48<br>3.2.13 Sulphate —————————————————————— 49<br>3.2.14 Phosphate —————————————————————- 49<br>3.2.15 Sodium ——————————————————————- 50<br>3.2.16 Potassium —————————————————————- 50<br>3.2.17 Heavy metals determination —————————————– 51<br>3.2.18 Bacteriological examination—————————————— 52<br>
Chapter FOUR
<br>4.0 Results and Discussions————————————————— 53<br>4.1 Turbidity ——————————————————————— 55<br>4.2 Colour ———————————————————————— 55<br>4.3 Conductivity—————————————————————– 57<br>4.4 Total dissolved solid ——————————————————- 57<br>4.5 pH —————————————————————————– 58<br>4.6 Total hardness, calcium hardness and magnesium hardness ——- 59<br>4.7 Total alkalinity————————————————————– 61<br>4.8 Nitrate ———————————————————————— 62<br>4.9 Phosphate ——————————————————————– 62<br>4.10 Sulphate——————————————————————— 63<br>4.11 Chloride——————————————————————— 63<br>4.12 Sodium and potassium————————————————— 64<br>4.13 Heavy metals ————————————————————– 67<br>4.14 Total coliform ————————————————————- 69<br>Conclusion and Recommendation ——————————————- 69<br>References ———————————————————————– 71<br>xi
<br></p>
Project Abstract
<p>
</p><p>Physicochemical and bacteriological analyses of underground water resources<br>in Nkanu East and Nkanu West Local Government Areas of Enugu state,<br>Nigeria were carried out to evaluate the potability and quality of the rural water<br>supplies and to provide baseline data for future quality assessment.<br>Underground water samples were collected from ten different boreholes in<br>Nkanu East and Nkanu West LGAs. The parameters measured include<br>temperature, colour, pH, electrical conductivity, turbidity, total dissolved<br>solids, total hardness, calcium hardness, magnesium hardness, total alkalinity,<br>chloride, sulphate, phosphate, nitrate, sodium, potassium, lead, chromium,<br>copper, cadmium, nickel, iron, zinc and total coliform. The water showed near<br>neutral pH (6.4- 8.2) favourably comparable to the WHO recommended range<br>of 6.5-8.5, with moderate permanent hardness of 2.5-289 mg/L. Conductivity<br>and total dissolved solids values for Amechi Idodo (4360 μs/cm, 2650 mg/L)<br>and Mbulu Owo (4880 μs/cm, 2930 mg/L) were higher than the WHO<br>guideline values of 1660 μs/cm and 1000 mg/L, respectively. Concentrations of<br>most trace metals and all anions were below the WHO guideline values.<br>However, iron,cadmium and chromium occurred at levels slightly above the<br>WHO permissible limit. Total coliform count in Amechi Idodo and Mbulu Owo<br>exceeded the WHO guideline value of zero. The underground waters studied<br>are good for drinking provided they are boiled to remove microbial<br>contamination.</p><p> </p>
<br><p></p>
Project Overview
<p>
1.0 Introduction<br>1.1 Underground water quality<br>Water is the matrix of life and forms the bulk of the weight of the living<br>cells. The resources of usable water have been diminishing and are unable to<br>meet the variety of needs of modern civilization. Water as the carrier of<br>pathogenic microorganisms, can cause immense harm to public health.<br>Waterborne diseases include typhoid and paratyphoid fever, dysentery and<br>cholera, polio and infectious hepatitis [1].<br>Many developing countries are witnessing a stage of development<br>where water from shallow wells and boreholes are gradually supplementing the<br>original sources of drinking water (surface water). The preference for<br>underground water to surface water is borne out of the belief that before<br>underground water can be distributed as tap water it must always be subjected<br>to some purification, while in practice, underground waters are filtered by<br>natural processes as they pass through columns of soils, sands, strata, or<br>sedimentary layers of rocks and are usually clear of solid materials as they<br>come from the aquifer, particularly if they are deep seated ones. The intricate<br>pore spaces or water passage ways of the aquifer materials act as a fine filter<br>and remove small particles of clay or any other fines [2]. Organic materials<br>decay or are destroyed in transit. Thus, the dirtiest and most polluted sewage<br>2<br>water may become clear of suspended/particulate solid materials once it has<br>gone through a thick bed of sand or geologic and pedologic units. As a result of<br>this natural self-cleansing of polluted water by deep-seated aquifers, physical<br>and biological aspects of pollution may not pose serious problems in<br>underground waters [2].<br>Thus, underground water may not be treated before use and is believed<br>to be free from pollution. In spite of all this, underground waters may have<br>pollutants that not only depend on the geology, pedology, and mineralogy of<br>the formations it flows through but also on the constituent<br>pollutants/contaminants in the water that recharges the underground water.<br>Unsatisfactory colour and taste are easily detected and are good indicators for<br>underground waters of poor quality. Some underground waters taste of iron,<br>others may have a disagreeable odor. Borehole waters must, as a rule, be<br>analyzed for chemical contaminants before the water is distributed and supplied<br>to households [2].<br>1.2 Background of Study<br>The area of study is Nkanu East and Nkanu West. A Local Government<br>Area in Enugu State, Nigeria, Nkanu East borders Ebonyi State to the east. Its<br>Headquarters is Amagunze. It is a rural area with a population of about 148,<br>774 and land mass of approximately 795 km2.. Nkanu West has its<br>Headquarters at Agbani. It has an area of 225 km2 and a population of 146,695.<br>3<br>The major occupation in these areas is farming. The various communities<br>making up the two local government areas live in small villages, which still<br>have considerable natural surroundings. Although there are springs and<br>streams, most of the communities rely on boreholes for their water supply due<br>to proximity and modernity [3].<br>Due to increased use of fertilizers and pesticides in this areas part of<br>which is leached into the underground water through the soil, there is increased<br>risk of pollution of these boreholes. Enugu, the state of study was previously<br>mined for coal and underground water pollution is an ever present risk in areas<br>of mining. Also most of the people use pit toilets which are sources of<br>underground water pollution [2].<br>1.3 Scope of Study<br>Samples of water from ten boreholes in the two LGAs specifically in<br>Amechi Idodo, Mbulu Owo, Umueze, Agbani, Ugbawka, Isiogbo Nara,<br>Akpugo, Amurri, Nara Unateze and Amodu Awkunanaw are to be collected.<br>Physicochemical, bacteriological and trace metal analysis comprising of<br>temperature, colour, pH, electrical conductivity, turbidity, total dissolved<br>solids, total alkalinity, total hardness, calcium, magnesium, chloride, nitrate,<br>phosphate, sulphate, sodium, potassium, total coliform, lead, copper, zinc,<br>chromium, cadmium, and nickel are to be undertaken and values obtained are<br>to be compared with World Health Organization (WHO) guideline values.<br>4<br>1.4 Objective of Study<br>There are yet no reported physicochemical or bacteriological studies of<br>underground water resources in Nkanu East and Nkanu West Local government<br>Areas. Therefore we set out to analyze borehole water samples from these areas<br>in order to ascertain the potability and safety of the water by comparing the<br>concentration levels with set standards and to procure the present quality status<br>as baseline data for future periodic monitoring of the underground water quality<br>in this area.<br>5
<br></p>