<p> </p><p>Cover Page<br>Title Page i<br>Certification ii<br>Dedication iii<br>Acknowledgements iv<br>Abstract v<br>Table of Contents vi<br>List of Tables xi<br>List of Figures xii<br>List of Plates xiii</p><p><strong>
This research is centered on the design and fabrication of cupola furnace and atomizer for the production aluminium powder metal with the available material.0.4kg of refined coke was chosen as the basis for material and energy balance calculations and the design calculations performed from whose values are used to produce the design drawings. Mild steel was used for the internal linings of the furnace casing while other material were selected based on functionality ,durability ,cost and local availability. The furnace and atomizer were assembled and the furnace inner wall of the casing was lined with refractory bricks made from heated mixture of kaolin, clay, sawdust and water after which the cylindrical shell was positioned .Testing was subsequently performed to evaluate the performance of the furnace and the atomizer by first gathering of the aluminium cans .The furnace was heated to 8700c and it was observe that the furnace has 36.9% efficiency which is within the acceptable value for furnace efficiencies. Atomizer produced various sizes of powder metal depending on the type of mesh used and the shape obtained was irregular in shape.
INTRODUCTION
Background of Study
Powder metallurgy is a technique concerned with the production of metal powders and converting them into useful shapes. It is a material processing technique in which particulate materials are consolidated to semi-finished and finished products. Metal powder production techniques are used to manufacture a wide spectrum of Metal powders designed to meet the requirements of a large variety of applications. Various powder production processes allow precise control of the chemical and physical characteristics of powders and permit the development of specific attributes for the desired applications. Powder production processes are constantly being improved to meet the quality, cost and performance requirements of all types of applications. Metal powders are produced by mechanical or chemical methods.
The most commonly used methods include water and gas atomization, milling, mechanical alloying, electrolysis, and chemical reduction of oxides.
The type of powder production process applied depends on the required production rate, the desired powder properties and the properties desired in the final part. Chemical and electrolytic methods are used to produce high purity powders while Mechanical milling is widely used for the production of hard metals and oxides. Atomization is the most versatile method for producing metal powders.
It is the dominant method for producing metal and pre-alloyed powders from aluminium, brass, iron, low alloy steel, stainless steel, tool steel, super alloy, titanium alloy and other alloys.
Atomization [Mehrotra 1984] is a process in which a liquid stream disintegrated into a large number of droplets of various sizes. Basically atomization consists of mechanically disintegrating a stream of molten metal into the fine particles by means of a jet of compressed gases or liquids. It is an important process which finds wide applications such diverse field as spraying for insecticidal use, fuel injection in internal combustion engines, liquid spray drying, and liquid dispersion in numerous liquidβgas contact operations such as distillation, humidification, and spray crystallization.
The technique of atomizing a metal melt, with fluid was connected with the production of metal powders. The basic principle involved in atomization of liquid consists in increasing the surface area of the liquid stream until it becomes unstable disintegrated. The energy required for disintegration can be imparted in several ways depending on the mode in which the energy is supplied. The atomization process [Mehrotra 1984] can be classified into three main categories:
Pressure atomization.
The present work concentrated on the third type of atomization. The kinetic energy of a second fluid stream, being ejected from a nozzle is used for disintegrating of the liquid. The stream in a free fall is impacted by a high pressure jet of second fluid which is usually gas or water emerges either tangentially or at angle from nozzle. So that molten which in general, have high surface tension can be atomized by the fluid atomization technique.
1.2 Aim and Objectives of the Study
1.2.1 Aim of Study
The aim of this study is to design and fabrication a mini cupola furnace and an atomizer for the production of powdered metal from waste aluminium cans.
1.2.2 Objectives of Study
The objectives of the study include the following
1.3 Problem Statement
Wide-spread application and high demand of powder metal in industrial and domestic processing activities and the littering- rate of aluminium cans all over the country which poses a serious adverse environmental condition, have grown at an alarming rate over the years. Therefore, the purpose of this project is to design and fabricate a mini-copula furnace and an atomizer for the production of powder metal from waste aluminium cans which can be used for various domestic and industrial applications and also serves as a good environmental pollution control for the aforementioned waste.
1.4 Scope of the Research Project
This research project focuses on the design and fabrication of a mini-copula furnace and an atomizer for the production of powder metal from waste aluminium cans through process atomization.
1.5 Relevance of the Study
The importance of this study includes the following:
1.6 Limitation of the Study
The factors hindering effective execution of this study are:
π Over 50,000 Project Materials
π± 100% Offline: No internet needed
π Over 98 Departments
π Software coding and Machine construction
π Postgraduate/Undergraduate Research works
π₯ Instant Whatsapp/Email Delivery
The project topic "Design and Implementation of an Intelligent Energy Management System for Smart Grid Applications" focuses on the development and de...
The project on "Design and Implementation of Smart Home Energy Management System using IoT Technology" aims to develop a cutting-edge system that leve...
The project topic "Design and Implementation of a Smart Energy Management System for Residential Buildings" focuses on the development and application...
The project "Design and Implementation of an IoT-Based Smart Energy Management System for Residential Buildings" aims to address the growing need for ...
The project on "Design and implementation of a smart grid system for optimizing energy distribution and management" aims to address the pressing need ...
The project, "Design and Implementation of an Energy-Efficient Smart Home System using Internet of Things (IoT) Technology," aims to revolutionize res...
The project topic, "Design and Implementation of a Smart Grid System for Efficient Energy Management," focuses on developing a smart grid system to en...
The project on "Design and Implementation of a Smart Energy Management System for Residential Buildings using Internet of Things (IoT) Technology" aim...
The project titled "Design and Implementation of Smart Grid Technology for Efficient Energy Management" aims to explore the integration of smart grid ...