In the last decades, the power industry has had a gradual and steady change from the centralized bulk system (grid) where power is injected to the transmission network from generator to a more decentralized system where power is injected directly to a distribution network (embedded generation). Nigeria is not left out in this trend. In this assessment study, the Siemensβ PSS/E software is used to run the Newton-Raphson load flow program to see the effect of EG on loss reduction and voltage profile improvement while comparing the results obtained with the installation of the traditional network compensators alongside their impact on network (element) loading. Furthermore, the load factor and EG level of penetration are determined via mathematical methods. This work shows that EG can reduce the Nigerian transmission network loss by 7% and a section-cut of it; the (Port Harourt) PH Mains network loss to 5.51% from 9.97%. The work further shows that EG improves the per unit (p.u.) voltage of a network especially at the buses directly connected to it as observed from buses 13(0.914 to 1.02 p.u.) and 14 (0.93t7 to 1.02 p.u.) of the transmission network considered. Similarly, EG greatly improved the overall voltage profile of the Port Harcourt Mains T/S 132/33kV with all bus voltages falling within the statutory voltage profile range (0.95 p.u. to 1.05 p.u.) except the Rumuodumaya Bus that improved from 0.8pu to 0.93pu. A comparison of the network performance with EG and with Fixed Shunt Compensation gives EG a better recommendation in the light of loss reduction, voltage profile improvement capabilities. Also more efficient consumption of power by consumers are achieved with the EG in operation as seen in the Load Factor studies. At a penetration of 14.76%, the EG has a positive effect on the overall network performance which has to be monitored as the level of penetration increases, so as to mitigate the impact on the technical losses of the network.
π Over 50,000 Project Materials
π± 100% Offline: No internet needed
π Over 98 Departments
π Software coding and Machine construction
π Postgraduate/Undergraduate Research works
π₯ Instant Whatsapp/Email Delivery
The project titled "Design and Implementation of an Intelligent Energy Management System for Smart Buildings" focuses on the development of a sophisti...
The project topic "Design and Implementation of an Intelligent Energy Management System for Smart Grid Applications" focuses on the development and de...
The project on "Design and Implementation of Smart Home Energy Management System using IoT Technology" aims to develop a cutting-edge system that leve...
The project topic "Design and Implementation of a Smart Energy Management System for Residential Buildings" focuses on the development and application...
The project "Design and Implementation of an IoT-Based Smart Energy Management System for Residential Buildings" aims to address the growing need for ...
The project on "Design and implementation of a smart grid system for optimizing energy distribution and management" aims to address the pressing need ...
The project, "Design and Implementation of an Energy-Efficient Smart Home System using Internet of Things (IoT) Technology," aims to revolutionize res...
The project topic, "Design and Implementation of a Smart Grid System for Efficient Energy Management," focuses on developing a smart grid system to en...
The project on "Design and Implementation of a Smart Energy Management System for Residential Buildings using Internet of Things (IoT) Technology" aim...