The experiments were conducted at the Department of Crop Science Analytical Laboratory and green house of Faculty of Agriculture, University of Nigeria, Nsukka. Experiment one was an analysis of the nutrient contents of fermented and unfermented plant waste materials using the official method of analysis of Association of Official Analytical Chemists (AOAC). Experiment two was on assessment of the effects of plant wastes and different forms of organic manure fermented for one or two months on the growth and yield of okra plants. The experiment was a split-split plot experiment laid out in a completely randomized design (CRD) with four replications. The factors were plant waste (four), particle size (two), and form (four), giving a total of thirty-two treatment combinations. The plant wastes were rice husks, moringa pod husks, grass, and control (no manure).The two particle sizes were 1.00 mm and 0.63 mm and the four types of manure were biol, biosol, biol and biosol combination and no manure. Data were collected on; number of leaves per plant, number of leaves/treatment, plant height/treatment, plant height, stem girth, stem girth/ treatment, seed weight per fruit, fruit weight, fruit girth, 100 seed weight, number of seeds per plant, average number of seeds/treatment. Data were subjected to analysis of variance (ANOVA). Mean separation was done using Fishers least significant difference. Significance was accepted at (P < 0.05). Moringa pod had the highest nitrogen (1.30%), phosphorus (16.38 ppm), potassium (0.54 ppm) and fat content (2.65%). The biols (P < 0.05) gave the highest percentage moisture of 87.4% for rice husk, 83.28% for moringa pod husk and 85% for grass. The least percentage ash was 0.84%, 0.87% and 0.94% respectively. Fat content was considerably higher in the raw wastes than in the fermented wastes at both one month and two months of fermentation. Moisture content was generally low at 6.4%, 7.0%, and 6.85% for moringa pod, grass and rice husk, respectively. The liquid (biol) of trhe wastes fermented for one month differed significantly ( P < 0.05) from both the biosol and the biol + biosol combination in improving plant height, number of leaves and stem girth of okra plant starting from three weeks after planting. Thus, biol gave the best result for fruit length (5.44 cm), fruit weight(0.78 g), fruit girth(4.52 cm), number of seeds (10.33), 100 seed weight (4.32 g) and seed weight per fruit (0.46 g)( at P < 0.05) compared to biosol that gave fruit length (3.88cm), fruit weight(0.38 g), fruit girth(2.92 cm), number of seeds(5.50), 100 seed weight(2.98g) and seed weight per fruit(0.19g). For wastes fermented for two months, the biol also gave the best result for fruit length (5.87 cm), fruit weight (0.63 g), fruit girth (4.10 cm), number of seeds (12.29), 100 seed weight (2.63 g) and seed weight per fruit (0.36 g),( P < 0.05), compared to the biosol that gave fruit length (1.33 cm), fruit weight(0.07 g), fruit girth(0.83 cm), number of seeds(1.33), 100 seed weight(0.67 g) and seed weight per fruit(0.03 g)( P < 0.05). Among the three plant wastes, the solid wastes (biosols) of rice husk improved okra fruit length (4.40 cm) more than grass (2.21 cm) and moringa pod husk (2.71 cm). Particle sizes have no significant effect (p< 0.05) on the growth and yield of okra. The liquid wastes (biols) of moringa pod husk gave the best growth and yield. Generally, plant growth and yield were better for wastes fermented for one month compared to wastes fermented for two months (P < 0.05).
📚 Over 50,000 Project Materials
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Software coding and Machine construction
🎓 Postgraduate/Undergraduate Research works
📥 Instant Whatsapp/Email Delivery
The research project titled "Effects of Climate Change on Crop Yields: A Case Study of Maize Production in a Tropical Region" aims to investigate the ...
The project on "Optimizing Irrigation Strategies for Sustainable Crop Production in Semi-Arid Regions" aims to address the critical challenge of achie...
Precision agriculture involves the use of advanced technology to optimize various aspects of crop production, such as seeding, fertilization, irrigation, and pe...
The project topic, "Application of Precision Agriculture Techniques in Crop Management," focuses on the utilization of advanced technologies and data-...
Precision agriculture is a cutting-edge approach that leverages technology to enhance crop production efficiency and sustainability. This research project focus...
Precision farming, also known as precision agriculture, is revolutionizing the way farmers approach crop production and resource management. This innovative app...
The project titled "Effects of Different Fertilization Methods on Crop Yield and Quality in Tomato Production" aims to investigate the impact of vario...
The project topic "Utilizing Remote Sensing Technology for Precision Agriculture in Crop Management" focuses on the integration of remote sensing tech...
The project aims to explore the implementation of precision agriculture techniques in the field of crop science to enhance crop yield and mitigate environmental...