Grid computing is a collection of computer resources from multiple locations assembled to provide computational services, storage, data or application services. Grid computing users gain access to computing resources with little or no knowledge of where those resources are located or what the underlying technologies, hardware, operating system, and so on are. Reliability and performance are among the key challenges to deal with in grid computing environments. Accordingly, grid scheduling algorithms have been proposed to reduce the likelihood of resource failure and to reduce the overhead of recovering from resource failure. Checkpointing is one of the faulttolerance techniques when resources fail. This technique reduces the work lost due to resource faults but can introduce significant runtime overhead. This research provided an enhanced checkpointing technique that extends a recent research and aims at lowering the runtime overhead of checkpoints. The results of the simulation using GridSim showed that keeping the number of resources constant and varying the number of gridlets, improvements of up to 9%, 11%, and 11% on throughput, makespan and turnaround time, respectively, were achieved while varying the number of resources and keeping the number of gridlets constant, improvements of up to 8%, 11%, and 9% on throughput, makespan and turnaround time, respectively, were achieved. These results indicate the potential usefulness of our research contribution to applications in practical grid computing environments.
INTRODUCTION
1.1 Background of the Study
1.2 Motivation
The ability to checkpoint a running application and restart it later can provide many useful benefits like fault recovery, advanced resource sharing, dynamic load balancing and improved service availability. A fault-tolerant service is essential to satisfy QoS requirements in grid computing. However, excessive checkpointing results in performance degradation. Thus there is the need to improve the performance by reducing the number of times that checkpointing is invoked.
π Over 50,000 Project Materials
π± 100% Offline: No internet needed
π Over 98 Departments
π Software coding and Machine construction
π Postgraduate/Undergraduate Research works
π₯ Instant Whatsapp/Email Delivery
The project topic, "Predicting Disease Outbreaks Using Machine Learning and Data Analysis," focuses on utilizing advanced computational techniques to ...
The project on "Implementation of a Real-Time Facial Recognition System using Deep Learning Techniques" aims to develop a sophisticated system that ca...
The project topic "Applying Machine Learning for Network Intrusion Detection" focuses on utilizing machine learning algorithms to enhance the detectio...
The project topic "Analyzing and Improving Machine Learning Model Performance Using Explainable AI Techniques" focuses on enhancing the effectiveness ...
The project topic "Applying Machine Learning Algorithms for Predicting Stock Market Trends" revolves around the application of cutting-edge machine le...
The project topic, "Application of Machine Learning for Predictive Maintenance in Industrial IoT Systems," focuses on the integration of machine learn...
Anomaly detection in Internet of Things (IoT) networks using machine learning algorithms is a critical research area that aims to enhance the security and effic...
Anomaly detection in network traffic using machine learning algorithms is a crucial aspect of cybersecurity that aims to identify unusual patterns or behaviors ...
Predictive maintenance is a proactive maintenance strategy that aims to predict equipment failures before they occur, thereby reducing downtime and maintenance ...