Home / Computer Science / Simultaneous and single gene expression: computational analysis for malaria treatment discoverysimultaneous and single gene expression: computational analysis for malaria treatment discovery

Simultaneous and single gene expression: computational analysis for malaria treatment discoverysimultaneous and single gene expression: computational analysis for malaria treatment discovery

 

Table Of Contents


Chapter ONE


1.1 Introduction
1.2 Background of Study
1.3 Problem Statement
1.4 Objective of Study
1.5 Limitation of Study
1.6 Scope of Study
1.7 Significance of Study
1.8 Structure of the Research
1.9 Definition of Terms

Chapter TWO


2.1 Overview of Gene Expression
2.2 Historical Perspectives on Gene Expression
2.3 Molecular Mechanisms of Gene Expression
2.4 Regulation of Gene Expression
2.5 Techniques for Studying Gene Expression
2.6 Significance of Gene Expression in Disease
2.7 Gene Expression Databases
2.8 Computational Approaches in Gene Expression Analysis
2.9 Challenges in Gene Expression Studies
2.10 Future Trends in Gene Expression Research

Chapter THREE


3.1 Research Methodology Overview
3.2 Research Design and Approach
3.3 Data Collection Methods
3.4 Sampling Techniques
3.5 Data Analysis Methods
3.6 Computational Tools Utilized
3.7 Validation of Findings
3.8 Ethical Considerations

Chapter FOUR


4.1 Analysis of Gene Expression Data
4.2 Identification of Key Gene Targets
4.3 Comparison of Simultaneous vs. Single Gene Expression Analysis
4.4 Interpretation of Computational Results
4.5 Correlation Analysis of Gene Expression Patterns
4.6 Integration of Bioinformatics Tools
4.7 Discussion on Potential Therapeutic Targets
4.8 Implications for Malaria Treatment Discovery

Chapter FIVE


5.1 Summary of Research Findings
5.2 Conclusions Drawn from the Study
5.3 Implications for Future Research
5.4 Recommendations for Practical Applications
5.5 Contribution to the Field of Gene Expression Analysis

Project Abstract

ABSTRACT

The major aim of this work is to develop an efficient and effective k-means algorithm to cluster malaria microarray data to enable the extraction of a functional relationship of genes for malaria treatment discovery. However, traditional k-means and most k-means variants are still computationally expensive for large datasets such as microarray data, which have large datasets with a large dimension size d. Huge data is generated and biologists have the challenge of extracting useful information from volumes of microarray data. Firstly, in this work, we develop a novel k-means algorithm, which is simple but more efficient than the traditional k-means and the recent enhanced k-means. Using our method, the new k-means algorithm is able to save significant computation time at each iteration and thus arrive at an O(nk2) expected run time. Our new algorithm is based on the recently established relationship between principal component analysis and the k-means clustering. We further prove that our algorithm is correct theoretically. Results obtained from testing the algorithm on three biological data and three non-biological data also indicate that our algorithm is empirically faster than other known k-means algorithms. We assessed the quality of our algorithm clusters against the clusters of known structure using the Hubert-Arabie Adjusted Rand index (ARIHA), we found that when k is close to d, the quality is good (ARIHA > 0.8) and when k is not close to d, the quality of our new k-means algorithm is excellent (ARIHA > 0.9). We compare three different k-means algorithms including our novel Metric Matrics k-means (MMk-means), results from an in-vitro microarray data with the classification from an in-vivo microarray data in order to perform a comparative functional classification of P. falciparum genes and further validate the effectiveness of our MMk-means algorithm. Results from this study indicate that the resulting distribution of the comparison of the three algorithms’ in- vitro clusters against the in-vivo clusters is similar, thereby authenticating our MMk-means method and its effectiveness. Lastly using clustering, R programming (with Wilcoxon statistical test on this platform) and the new microarray data of P. yoelli at the liver stage and the P. falciparum microarray data at the blood stages, we extracted twenty nine (29) viable P. falciparum and P. yoelli genes that can be used for designing a Polymerase Chain Reaction (PCR) primer experiment for the detection of malaria at the liver stage. Due to the intellectual property right, we are unable to list these genes here.



Project Overview

Blazingprojects Mobile App

πŸ“š Over 50,000 Project Materials
πŸ“± 100% Offline: No internet needed
πŸ“ Over 98 Departments
πŸ” Software coding and Machine construction
πŸŽ“ Postgraduate/Undergraduate Research works
πŸ“₯ Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Computer Science. 4 min read

Predicting Disease Outbreaks Using Machine Learning and Data Analysis...

The project topic, "Predicting Disease Outbreaks Using Machine Learning and Data Analysis," focuses on utilizing advanced computational techniques to ...

BP
Blazingprojects
Read more β†’
Computer Science. 4 min read

Implementation of a Real-Time Facial Recognition System using Deep Learning Techniqu...

The project on "Implementation of a Real-Time Facial Recognition System using Deep Learning Techniques" aims to develop a sophisticated system that ca...

BP
Blazingprojects
Read more β†’
Computer Science. 4 min read

Applying Machine Learning for Network Intrusion Detection...

The project topic "Applying Machine Learning for Network Intrusion Detection" focuses on utilizing machine learning algorithms to enhance the detectio...

BP
Blazingprojects
Read more β†’
Computer Science. 3 min read

Analyzing and Improving Machine Learning Model Performance Using Explainable AI Tech...

The project topic "Analyzing and Improving Machine Learning Model Performance Using Explainable AI Techniques" focuses on enhancing the effectiveness ...

BP
Blazingprojects
Read more β†’
Computer Science. 4 min read

Applying Machine Learning Algorithms for Predicting Stock Market Trends...

The project topic "Applying Machine Learning Algorithms for Predicting Stock Market Trends" revolves around the application of cutting-edge machine le...

BP
Blazingprojects
Read more β†’
Computer Science. 3 min read

Application of Machine Learning for Predictive Maintenance in Industrial IoT Systems...

The project topic, "Application of Machine Learning for Predictive Maintenance in Industrial IoT Systems," focuses on the integration of machine learn...

BP
Blazingprojects
Read more β†’
Computer Science. 2 min read

Anomaly Detection in Internet of Things (IoT) Networks using Machine Learning Algori...

Anomaly detection in Internet of Things (IoT) networks using machine learning algorithms is a critical research area that aims to enhance the security and effic...

BP
Blazingprojects
Read more β†’
Computer Science. 4 min read

Anomaly Detection in Network Traffic Using Machine Learning Algorithms...

Anomaly detection in network traffic using machine learning algorithms is a crucial aspect of cybersecurity that aims to identify unusual patterns or behaviors ...

BP
Blazingprojects
Read more β†’
Computer Science. 3 min read

Predictive maintenance using machine learning algorithms...

Predictive maintenance is a proactive maintenance strategy that aims to predict equipment failures before they occur, thereby reducing downtime and maintenance ...

BP
Blazingprojects
Read more β†’
WhatsApp Click here to chat with us