Home / Chemistry / Production of bio-diesel using palm kernel

Production of bio-diesel using palm kernel

 

Table Of Contents


No response received.

Project Abstract

Abstract
The production of bio-diesel using palm kernel has gained significant attention in recent years due to the increasing demand for renewable and sustainable energy sources. Palm kernel oil is a promising feedstock for bio-diesel production because of its high oil content and availability in large quantities from palm trees. This research project aims to investigate the feasibility and efficiency of producing bio-diesel from palm kernel oil through the transesterification process. The first phase of the project involves the extraction of oil from palm kernels using mechanical pressing or solvent extraction methods. The extracted oil will then undergo a series of refining processes to remove impurities and improve the quality of the oil. Subsequently, the transesterification reaction will be carried out using an alcohol (methanol or ethanol) and a catalyst (such as sodium hydroxide) to convert the palm kernel oil into bio-diesel and glycerol. The bio-diesel produced will be analyzed for its key properties such as viscosity, density, flash point, and cetane number to ensure that it meets the standard specifications set by regulatory bodies. The glycerol by-product will also be characterized to determine its purity and potential applications. The overall efficiency of the bio-diesel production process will be evaluated by calculating the yield of bio-diesel obtained from the palm kernel oil and assessing the energy balance of the process. In addition to the technical aspects of bio-diesel production, the environmental and economic implications of using palm kernel oil as a feedstock will be investigated. Life cycle assessment (LCA) will be conducted to evaluate the environmental impact of producing bio-diesel from palm kernel oil compared to conventional diesel fuel. Economic analysis will also be carried out to determine the production costs of bio-diesel and assess its competitiveness in the energy market. Overall, this research project aims to contribute to the advancement of bio-diesel production technology using palm kernel oil as a sustainable feedstock. The findings of this study will provide valuable insights into the feasibility of scaling up bio-diesel production from palm kernel oil and its potential as a renewable energy source to reduce greenhouse gas emissions and dependence on fossil fuels.

Project Overview

1.1     BACKGROUND OF THE STUDY

Biodiesel (fatty acid methyl esters) is an alternative fuel for diesel engines. It is an alcohol ester product from the transesterification of triglycerides in vegetable oils or animals accomplished by reacting lower alcohols such as methanol or ethanol with triglycerides.

The National Biodiesel Board (USA) technically defined biodiesel as a mono-alkyl ester. Blends of biodiesel and conventional hydrocarbon based diesel are products most commonly distributed for use in the retail diesel fuel market place. Biodiesel contain no petroleum, but it can be blended at any level with petroleum diesel to create a biodiesel blend. Much of the world uses a system known as the “B” factor to state the amount of biodiesel in any fuel mix:

  • Ø 100% biodiesel is referred to as B100.
  • Ø 20% biodiesel, 80% petrodiesel is labelled B20.
  • Ø 5% biodiesel, 95% petrodiesel is labelled B5.
  • Ø 2% biodiesel, 98% petrodiesel is labelled B2.

Blends of less than 20% biodiesel can be used in diesel equipment with no, or only minor modifications. Biodiesel can also be used in its pure form (B100), but may be blended with petroleum diesel at any concentration in most injection pump diesel engine. New extreme high-pressure (29000 psi) common rail engine have strict factory limits of B5 or B20 depending on manufacturers.

Biodiesel has different solvent properties than petrodiesel, and will degrade natural rubber gaskets and hoses in vehicles (mostly vehicles manufactured before 1992), although these tend to wear out naturally and most likely will have already been replaced with FKM, which is non reactive to biodiesel.

The first diesel engine was produced by Rudolf in Augsburg and Germany. In remembrance of this event, August 10 has been declared “International Biodiesel Day”. Rudolf diesel demonstrated a diesel running on pea nut (at the request of the French government) but for the French otto company at the world fair in Paris, France in 1990. (Knothe, 2001).

Biodiesel has been known to breakdown deposits of residue in the fuel lines where petrodiesel has been used. As a result, fuel filters may become clogged with particulates of a quick transition to pure biodiesel is made. Therefore, it is recommended to change the fuel filters on engine and heaters shortly after switching to a biodiesel blend.

Biodiesel is light to dark yellow liquid immiscible with water, with high boiling point and low vapour pressure. It has been used as a substitute for diesel fuel in the automobile industry and also referred to as a diesel – equivalent processed fuel derived from vegetable oils. (Biodiesel, 2007).

Several research have been performed on the production of biodiesel and some basic feedstock for the fuel includes animal fats, vegetable oils, soy, rapseed, jatropha, mahua, mustard, flax, sunflower, palm oil, hemp, field pennycress, pongamiapinnata and algae. Pure biodiesel is the lowest emission diesel fuel. Although liquefied petroleum gas and hydrogen have cleaner combustion, they are used to fuel much less efficient petrol engines and are not as widely available. Biodiesel is an oxygenated fuel, meaning that it contains a reduced amount of carbon and higher hydrogen and oxygen content than fossil diesel. This improves the combustion and reduces the particulate emission from un-burnt carbon. Biodiesel is also safe to handle and transport because it is as biodegradable as sugar, ten times less toxic than table salt, has a high flash point of about 300oF (148oC) compared to petroleum diesel fuel, which has a flash point of 125oF (52oC). Current commercial production of biodiesel (FAME) is via homogeneous transesterification but this process has a lot of limitations, thus, making the cost of biodiesel not economical as compared to petroleum-derived diesel. One of the most significant limitations using this process is the formations of soap in the product mixture leading to additional cost required for the separation of soap from the biodiesel. Also, the formation of soap has also led to the loss of triglycerides molecules that can be used to form biodiesel. However, since the catalyst and the reactants/products are in the same phase, the separation of products (biodiesel) from the catalyst becomes complex. On the other hand, heterogeneous transesterification can overcome all these limitations in which solid based catalyst is used in place of homogeneous catalyst, making it a more efficient process for biodiesel production with lower cost and reduced environmental impact.

Xie et al. studied the transesterification of soybean oil to methyl ester using potassium-loaded alumina catalyst. Also, Suppes et al. studied the transesterification reaction of soybean oil with zeolite and metal catalysts for the production of biodiesel, while Jitputti et al. studied the transesterification of crude palm kernel oil and crude coconut oil using several acidic and basic solids.


Blazingprojects Mobile App

📚 Over 50,000 Project Materials
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Software coding and Machine construction
🎓 Postgraduate/Undergraduate Research works
📥 Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Chemistry. 2 min read

Development of Novel Catalysts for Green Chemistry Applications...

The project on "Development of Novel Catalysts for Green Chemistry Applications" aims to address the pressing need for more sustainable and environmen...

BP
Blazingprojects
Read more →
Chemistry. 3 min read

Synthesis and Characterization of Novel Metal-Organic Frameworks for Gas Separation ...

The project titled "Synthesis and Characterization of Novel Metal-Organic Frameworks for Gas Separation Applications" focuses on the development and a...

BP
Blazingprojects
Read more →
Chemistry. 4 min read

Development of Novel Catalysts for Sustainable Organic Synthesis Reactions...

The project "Development of Novel Catalysts for Sustainable Organic Synthesis Reactions" focuses on addressing the growing need for environmentally fr...

BP
Blazingprojects
Read more →
Chemistry. 2 min read

Development of Novel Catalysts for Green Energy Production...

The project on "Development of Novel Catalysts for Green Energy Production" aims to address the growing need for sustainable and efficient energy sour...

BP
Blazingprojects
Read more →
Chemistry. 2 min read

Synthesis and Characterization of Metal-Organic Frameworks for Gas Separation Applic...

The project on "Synthesis and Characterization of Metal-Organic Frameworks for Gas Separation Applications" focuses on the development and evaluation ...

BP
Blazingprojects
Read more →
Chemistry. 3 min read

Investigating the effects of pH on enzyme activity in catalase....

The project titled "Investigating the effects of pH on enzyme activity in catalase" aims to explore the impact of varying pH levels on the activity of...

BP
Blazingprojects
Read more →
Chemistry. 2 min read

Synthesis and Characterization of Novel Organic Polymers for Drug Delivery Applicati...

The project on "Synthesis and Characterization of Novel Organic Polymers for Drug Delivery Applications" aims to explore the development of innovative...

BP
Blazingprojects
Read more →
Chemistry. 4 min read

Investigation of the effects of different catalysts on the rate of a chemical reacti...

The project aims to investigate and analyze the impact of various catalysts on the rate of a chemical reaction. Catalysts play a crucial role in accelerating or...

BP
Blazingprojects
Read more →
Chemistry. 2 min read

Development of Novel Catalysts for Green Chemistry Applications...

The project titled "Development of Novel Catalysts for Green Chemistry Applications" focuses on the synthesis and application of innovative catalysts ...

BP
Blazingprojects
Read more →
WhatsApp Click here to chat with us