The effect of concentration of hydrochloric acid on hydrolysis of cellulose (saw-dust) to glucose was studied on this research project and the steps obtained to achieve this project involved treatment of saw-dust (cellulose) with different concentrations of the acid at constant temperature of 80Β° (350k) for 30mins. This was followed by glucose analysis, some analysis or experiments were done on acid hydrolysis in order to study the effect of (HCL) acid on the hydrolysis of cellulose to glucose. The process used in this hydrolysis was acid hydrolysis in which HCL acid was used at constant temperature of 80oC and the saw-dust used [was obtained by grinding wood with saw] was weighed and mixed with water . Secondly, during this analysis/experiment, it was observed that hydrochloric acid hydrolyzed well from the readings gotten from each result that was carried out during the analysis. Then lastly, glucose analysis was carried out to determine the absorbance and glucose concentration. It was noticed that the best concentration of HCL acid during hydrolysis yields glucose concentration of 0.127g or 1.270%.
1.1 Introduction
Cellulose is the name given to a long chain of atoms consisting of carbon, hydrogen and oxygen arranged in a particular manner it is a naturally occurring polymeric material containing thousands of glucose-like rings each of which contain three alcoholic OH groups. Its general each of which contain three alcoholic OH groups. Its general formula is represented as (C6H1005)n. the oh-groups present in cellulose can be esterifies or etherified, the most important cellulose derivatives are the esters.
Cellulose is found in nature in almost all forms of plant lifeβs, and especially in cotton and wood. A cellulose molecule is made up of large number of glucose units linked together by oxygen atom. Each glucose unit contains three(3) hydroxyl groups, the hydroxyl groups present at carbon-6 is primary, while two other hydroxyl are secondary. Cellulose is the most abundant organic chemical on earth more than 50% of the carbon is plants occurs in the cellulose of stems and leave wood is largely cellulose, and cotton is more than 90% cellulose.
π Over 50,000 Project Materials
π± 100% Offline: No internet needed
π Over 98 Departments
π Software coding and Machine construction
π Postgraduate/Undergraduate Research works
π₯ Instant Whatsapp/Email Delivery
The project "Design and Optimization of a Chemical Process for Sustainable Production of Biofuels" focuses on developing an efficient and environmenta...
The project on "Optimization of Biofuel Production from Algae" focuses on exploring innovative strategies to maximize the efficiency of biofuel produc...
The project topic "Design and Optimization of a Novel Chemical Process for Sustainable Energy Production" focuses on the development of an innovative ...
The project topic "Design and Optimization of a Bioreactor for Production of Biofuels" focuses on the development of an innovative system for the prod...
The project on "Optimization of Bioreactor Design for Production of Bioethanol from Agricultural Waste" aims to address the growing need for sustainab...
The project topic "Optimization of Biogas Production from Food Waste through Anaerobic Digestion" focuses on the sustainable conversion of food waste ...
The project topic, "Optimization of Biodiesel Production Using Microalgae as Feedstock," focuses on the sustainable production of biodiesel, a renewab...
The project topic "Optimization of Waste Water Treatment Processes using Advanced Chemical Engineering Techniques" focuses on enhancing the efficiency...
The project topic "Design and Optimization of a Sustainable Process for Bioethanol Production from Agricultural Waste" focuses on the development of a...