Home / Biology edcuation / TO PRODUCE AND CHARACTERIZE ACTIVATED CARBON FROM SUGARCANE BAGASSE BY THERMAL METHOD

TO PRODUCE AND CHARACTERIZE ACTIVATED CARBON FROM SUGARCANE BAGASSE BY THERMAL METHOD

 

Table Of Contents


<p> </p><p>Title page &nbsp; — &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – i &nbsp; &nbsp; </p><p>Declaration — &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -ii</p><p>Approval page — &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -iii</p><p>Dedication — &nbsp; &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -iv</p><p>Acknowledgement — &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -v &nbsp; &nbsp; </p><p>Table of content &nbsp; — &nbsp; &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -vi &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Abstract — &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; – &nbsp; &nbsp; &nbsp; -vii</p> <br><p></p>

Project Abstract

Abstract
Sugarcane bagasse is a readily available agricultural waste product with potential for value addition through the production of activated carbon. This study focuses on the production and characterization of activated carbon from sugarcane bagasse using a thermal activation method. The thermal method involves the carbonization of the raw material followed by activation in a controlled atmosphere to create a porous structure suitable for various applications. The research investigates the influence of key parameters such as activation temperature, activation time, and impregnation ratio on the properties of the activated carbon. Characterization of the produced activated carbon includes surface area analysis, pore size distribution, functional groups determination, and scanning electron microscopy to assess the morphology of the material. The surface area and pore structure are crucial factors that influence the adsorption capacity and efficiency of the activated carbon. The results show that the activation temperature significantly affects the development of porosity in the activated carbon. Higher temperatures lead to increased surface area and pore volume, enhancing the adsorption capacity of the material. The activation time also plays a crucial role in determining the final properties of the activated carbon. Longer activation times generally result in higher surface area, but there is an optimal point beyond which further activation may lead to a decrease in adsorption properties. Moreover, the impregnation ratio of activating agent to sugarcane bagasse affects the formation of pores during activation. An optimal impregnation ratio is necessary to ensure the proper development of porosity in the activated carbon. Characterization results indicate that the produced activated carbon possesses a high surface area, well-defined pore structure, and functional groups suitable for adsorption applications. Overall, the thermal method proves to be an effective strategy for producing activated carbon from sugarcane bagasse with desirable properties for various environmental and industrial applications. The utilization of agricultural waste for value-added products not only addresses waste management issues but also contributes to sustainable practices. Further research can explore the optimization of process parameters and the application of the produced activated carbon in areas such as wastewater treatment, gas purification, and energy storage.

Project Overview

1.0 INTRODUCTION

1.1 Background of the Study

Activated carbon also called activated charcoal is a carbonaceous, highly porous adsorptive medium that has a complex structure which comprises primarily of carbon atoms. The activated carbons are channels created within a rigid, skeleton of disordered layers of carbon atoms, linked together by chemical bonds, stacked unevenly, creating a highly porous structure of nooks, crannies, cracks and crevices between the carbon layers. (Sheffler, 1996).

Activated carbon are manufactured from lignocellulose materials (the combination of lignin and cellulose in the structural cells of woody plants), coal, petroleum coke, coconut shell, sugarcane bagasse and other agricultural materials. (Girgis and Ishak, 1999). Activation by different method or high temperature mechanisms are used in the production of activated carbons from these raw materials.

The intrinsic pore network in the lattice structure of activated carbons allows the removal of impurities from gaseous and liquid media through a mechanism referred to as adsorption. (Larteet al., 1999). Activated carbon is mainly available in three forms namely powdered, granular and extruded form and each form is available in many sizes, Based upon the application and requirements.

The importance of activated carbon to an ever growing society cannot be over emphasized considering its enormous uses. Its uses ranges from liquid phase to gaseous-phase applications in domestic, commercial, health care centers and industrial settings. (Hassler, 1963).

In many water treatment applications, activated carbon has proved to be the least expensive treatment option. One of the major attributes of activated carbon treatment is its ability to remove a wide variety of toxic organic compounds to non-detectible levels (99.9%). (Mendez et al, 2006).

The basic method of producing activated carbon from sugarcane bagasse are the physical and chemical methods. Both methods can combine in efforts to produce higher surface area. (Baksi et al., 2006).

1.2 Research Problem Statement

Sugarcane bagasse is a waste material constituting an environmental problem. The material is found to indiscriminately liter most cities in the northern Nigeria. However, it can be put into proper use by treating and transforming it. Preparation of activated carbon from sugarcane bagasse using thermal method will go a long way to solving the environmental problem constituted by the sugarcane bagasse and it could also be a major research guide in the study of activated carbon.

1.3 Aim and Objectives

The aim of this research is to produce and characterize activated carbon from sugarcane bagasse by thermal method. The objectives of this research are as follows;

ü To investigate the effect of temperature on the quality of the activated carbon produced.

ü To characterize the activated carbon produced.

1.4 Scope

The scope of the research work includes

·       To investigate the effect of temperature from 500, 550 and 600oc on the quality of the activated carbon produced.

·       To analyze the activated carbon through FTIR and proximate analysis.

·       Preparation of activated carbon from sugarcane bagasse.

·       Characterization of activated carbon produced from sugarcane bagasse.

1.5 Relevance of the Research

a)   Utilization of available raw materials and waste materials.

b)   Creation of job opportunity.

c)   Generation of revenue.

1.6 Justification

Sugarcane bagasse is a locally available raw material which is not expensive but has a great effect in the production of activated carbon. The method of production is safe and easy.


Blazingprojects Mobile App

📚 Over 50,000 Project Materials
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Software coding and Machine construction
🎓 Postgraduate/Undergraduate Research works
📥 Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Biology edcuation. 3 min read

Assessing the effectiveness of multimedia simulations in teaching cellular respirat...

...

BP
Blazingprojects
Read more →
Biology edcuation. 3 min read

Exploring the impact of outdoor fieldwork on student attitudes towards biology....

...

BP
Blazingprojects
Read more →
Biology edcuation. 4 min read

Investigating the use of concept mapping in teaching biological classification....

...

BP
Blazingprojects
Read more →
Biology edcuation. 4 min read

Analyzing the influence of cultural diversity on biology education....

...

BP
Blazingprojects
Read more →
Biology edcuation. 3 min read

Assessing the impact of cooperative learning on student understanding of genetics....

...

BP
Blazingprojects
Read more →
Biology edcuation. 4 min read

Investigating the effectiveness of online quizzes in promoting biology knowledge re...

...

BP
Blazingprojects
Read more →
Biology edcuation. 3 min read

Exploring the use of storytelling in teaching ecological concepts....

...

BP
Blazingprojects
Read more →
Biology edcuation. 2 min read

Analyzing the impact of teacher-student relationships on student achievement in biol...

...

BP
Blazingprojects
Read more →
Biology edcuation. 3 min read

Investigating the role of metacognitive strategies in biology learning....

...

BP
Blazingprojects
Read more →
WhatsApp Click here to chat with us