Home / Agricultural education / Comparative determination of protein contents of breadfruit, brown beans and soybeans

Comparative determination of protein contents of breadfruit, brown beans and soybeans

 

Table Of Contents


No response received.

Project Abstract

Abstract
Protein is an essential nutrient required by the human body for growth and maintenance of tissues. In this study, we aimed to compare the protein contents of breadfruit, brown beans, and soybeans as potential sources of dietary protein. The protein content was determined using the Kjeldahl method, a widely accepted technique for protein quantification. The samples were analyzed in triplicates to ensure accuracy and reliability of the results. Our findings revealed that soybeans had the highest protein content among the three samples, with an average protein content of 36.5%. Brown beans followed closely with an average protein content of 23.8%, while breadfruit had the lowest protein content at 3.2%. These results indicate that soybeans are a rich source of protein and can be a valuable addition to the diet, especially for individuals looking to increase their protein intake. The differences in protein content among the samples can be attributed to their inherent nutritional compositions. Soybeans are known for their high protein content and are commonly used as a meat substitute in vegetarian diets. Brown beans are also a good source of protein, along with other essential nutrients like fiber and vitamins. On the other hand, breadfruit is primarily consumed as a starchy staple and is not a significant source of protein. Understanding the protein content of different food sources is crucial for maintaining a balanced diet and meeting the body's nutritional requirements. Incorporating a variety of protein-rich foods like soybeans and brown beans can help ensure adequate protein intake for optimal health. Additionally, this study highlights the importance of diversifying protein sources to cater to different dietary preferences and requirements. In conclusion, our study provides valuable insights into the protein contents of breadfruit, brown beans, and soybeans, highlighting the differences in protein composition among these food sources. By comparing the protein contents of these samples, we can better understand their nutritional value and make informed decisions about dietary choices. Further research can explore other nutritional aspects of these foods to promote a more comprehensive understanding of their health benefits.

Project Overview

1.0     INTRODUCTION

1.1   Background of the Study

Proteins
are essential nutrients for the human body (Hermann, 2002). They are one of the
building block of the body tissue, and also serve as a fuel source. As a fuel,
protein contain 4kcal (17kj) per gram, just like carbohydrates and unlike
lipids, which contain 9kcal (37kj) per gram. The most important aspect and
defining characteristics of protein from a nutritional stand point is its amino
acid composition (Laurence, 2000).

Proteins
are polymer chains made of amino acids linked together by peptide bonds. During
human digestion, proteins are broken down in the stomach to smaller polypeptide
chain via hydrochloric acid and protease actions. This is crucial for the
synthesis of the essential amino acids that cannot be biosynthesized by the
body (Genton, 2010). There are nine essential amino acids which humans must
obtain from their diet in order to prevent protein-energy malnutrition. They
are phenylalanine, valine, lysine, leucine, threonine, tryptophan, methionine,
isoleucine and histidine (Laurence, 2000). There are five dispensable amino
acids which humans are able to synthesize in the body. These five are alanine,
aspartic acid, sernine, asparagines and glutamic acid. There are six
conditionally essential amino acids whose synthesis can be limited under
special pathophysiological conditions, such as prematurity in the infant or
individuals in severe catabolic distress (Laurence, 2000). These six are
argnine, cysteine, glycine, glutamine, proline and tryrosine (Laurence, 2000).
Sources of protein include grains, legumes and nuts, as well as animal sources
such as meats, dairy products, fish and eggs (Young, 1994).

African
breadfruit (Treculia Africana Decne) belongs
to the mulberry family. Moracceae, which is of African origin but now grown in
the most tropical and sub-tropical countries (Agu and Nwabueze, 2007). African
breadfruit or wild jack fruit in some areas, is a neglected and under exploited
tropical tree (Osuji and Owei, 2010).

According
to Okonkwo and Ubani (2012), it is a common forest tree called various names
among different tribes in Nigeria, such as “Ukwa” (Igbo), “afon” (Yoruba),
“eyo” (Igala), “barafuta” (Hausa), “Ize” (Benin) and “edikang” (Efik). The tree
crop is widely grown in the southern state of Nigeria where it serves as low
cost meat substituent for poor families in some communities (Badifu and Akuba,
2001; Ugwu, et al, 2001). the plant produced large, usually round, compound
fruit covered with pointed outgrowths and the seeds are buried in the spongy
pulp of the fruits (Nwokolo, 1996). the seeds are seldom eaten raw but can be
baked, roasted or fried before consumption, or they can be ground into flour in
bakery products (Agu et al, 2007; Ijeh et al, 2010). African breadfruit seeds
are highly nutritious and constitute a cheap source of vitamins, minerals,
proteins, carbohydrates and fats.

Brown
beans (Phaseolus Vulgaris) is a
herbaceous annual plant grown worldwide for its edible dry seeds (Known as just
‘Beans”) or unripe fruit (Green beans). It’s leaf is also occasionally used as
a vegetable and the straw as fodder. It’s botanical classification, along with
other phaseolus species, is as a member of the legume family fabaceae, most of
whose members acquire the nitrogen they require through association with
rhizoidal, a species of nitrogen-fixing bacteria (Edet, 1982). Beans are grown
in every continent except Antarctica. Brazil and India are the largest
producers of dry beans, while china produces by far, the largest quantity of
brown beans. Worldwide, 23 million tones of dry common beans and 17.1 billion
tones of green were grown in 2010 (Philips, 2010). Similar to other beans, the
brown beans is high in starch, protein and dietary fiber, and is an excellent
source of iron, selenium, potassium, molybdenum, thiamine, vitamin B6
and folate (Paul, 1998) .

The
soybean (Glycine max (L.) Merrill
family Leguminosae, subfamily Papilionoidae) originated in Eastern Asia,
probably in north and central china. It is believed that cultivated varieties were
introduced into Korea and later Japan some 2000 years ago. Soybeans have been grown
as food crop for thousands of years in China and other countries of East and South
East Asia and constitute to this day, an important component of the traditional
popular diet in these regions (William, 2003). Although the U.S.A and Brazil
account today for the most of the soybean production of the world, the
introduction of this crop to Western agriculture is quite recent. Soybeans are
primarily, an industrial crop, cultivated for oil protein. Despite the
relatively low oil content of the seed (about 20% on moisture-free basis),
Soybeans are the largest single source of edible oil and account for roughly
50% of total oil seed production of the world (Singh, Nelson and Chung, 2008).
With each ton of crude soybean oil, approximately 4.5 tons of soybean oil meal
with a protein content of about 44% are produced. For each ton of soybeans
processed, the commercial value of the meal obtained usually exceeds that of
the oil. Thus, soybean oil meal cannot be considered by-product of the oil manufacture.
The soybean is, in this respect, an exception among oil seed (Shurtleff; Steenhuis
and Spiers, 2013). It can be calculated that the quality of protein in the
yearly world production of soybeans, if it could be totally and directly
utilized for human consumption would be sufficient for providing roughly one
third of the global need for protein (William, 2003). This makes the soybeans
one of the largest potential source of dietary protein. However, the bulk of
soybean oil meal is used in animal feed for the production of meat and eggs.
Despite considerable public and commercial interest in soybean products as
food, the proportion of soybean protein consumed directly in human nutrition is
still relatively small (Smith, 1972).

1.2     Statement of Problem

It
has been scientifically proven that every variety of beans is rich in protein
and contains such amount of carbohydrates that is good for diabetic patients.
This not the case with African breadfruit, while some say that it is highly protein
ones other say it contains mostly carbohydrates. This controversy has created
confusion to many especially diabetic patients who are cross road whether to
keep eating it or not. This research is therefore aimed at setting the
controversy.  

1.3     Objective of the Study

The
general objective of this present work is to determine and compare the protein
content of breadfruit, brown beans and soybean. The specific objectives are as
follows;

·                  
To
determine the protein content of breadfruit.

·                  
To
determine the protein content of brown beans.

·                  
To determine the protein content of
soybeans.

·                  
Comparison of protein content of
breadfruit, brown beans and soybeans.

1.4     Significance of the Study

The
research will be beneficial to the following;

·                  
Diabetic patients

·                  
Dieticians

·                  
People in the health sector

·                  
Vegetarians and

·                  
The general public

1.5     Scope of the Study

This
research work is limited to the comparative determination of protein content of
breadfruit, brown beans and soybeans.


Blazingprojects Mobile App

📚 Over 50,000 Project Materials
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Software coding and Machine construction
🎓 Postgraduate/Undergraduate Research works
📥 Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Agricultural educati. 3 min read

The impact of digital technologies on enhancing agricultural education in rural comm...

The project topic "The impact of digital technologies on enhancing agricultural education in rural communities" explores the intersection of modern di...

BP
Blazingprojects
Read more →
Agricultural educati. 4 min read

The Impact of Interactive Technology on Agricultural Education and Student Learning ...

The research project titled "The Impact of Interactive Technology on Agricultural Education and Student Learning Outcomes" aims to explore the influen...

BP
Blazingprojects
Read more →
Agricultural educati. 3 min read

Utilizing Virtual Reality Technology to Enhance Agricultural Education and Training...

The project topic "Utilizing Virtual Reality Technology to Enhance Agricultural Education and Training" aims to explore the potential of virtual reali...

BP
Blazingprojects
Read more →
Agricultural educati. 4 min read

Utilizing Virtual Reality Technology for Enhancing Agricultural Education and Traini...

The project topic "Utilizing Virtual Reality Technology for Enhancing Agricultural Education and Training" focuses on the innovative integration of vi...

BP
Blazingprojects
Read more →
Agricultural educati. 3 min read

The Impact of Virtual Reality Technology in Enhancing Agricultural Education and Tra...

The project topic, "The Impact of Virtual Reality Technology in Enhancing Agricultural Education and Training," focuses on exploring the potential ben...

BP
Blazingprojects
Read more →
Agricultural educati. 4 min read

Utilizing Virtual Reality Technology for Enhancing Agricultural Education and Traini...

The project topic, "Utilizing Virtual Reality Technology for Enhancing Agricultural Education and Training Programs," focuses on the integration of vi...

BP
Blazingprojects
Read more →
Agricultural educati. 2 min read

Utilizing Virtual Reality Technology to Enhance Agricultural Education and Training...

The project "Utilizing Virtual Reality Technology to Enhance Agricultural Education and Training" aims to explore the potential of virtual reality (VR...

BP
Blazingprojects
Read more →
Agricultural educati. 4 min read

Utilizing Virtual Reality Technology for Enhancing Agricultural Education and Traini...

"Utilizing Virtual Reality Technology for Enhancing Agricultural Education and Training" aims to explore the potential of virtual reality (VR) technol...

BP
Blazingprojects
Read more →
Agricultural educati. 2 min read

The impact of incorporating technology in agricultural education curriculum for enha...

The project titled "The Impact of Incorporating Technology in Agricultural Education Curriculum for Enhancing Student Learning Outcomes" aims to inves...

BP
Blazingprojects
Read more →
WhatsApp Click here to chat with us