Thesis Overview
Normal pressure hydrocephalus (NPH) is a clinical syndrome with symptoms
of gait unsteadiness, urinary disturbance, and cognition impairment in
the context of ventriculomegaly out of proportion of cerebral atrophy
and normal cerebrospinal fluid (CSF) pressure [
1,
2].
Hydrocephalus (HC) is divided into non-communicating HC and
communicating HC. Communicating HC can be further divided, to idiopathic
Normal Pressure Hydrocephalus (iNPH) [
3],
where no known cause can be found, as opposed to secondary NPH (sNPH)
where a known cause lies behind such as a subarachnoid hemorrhage,
bacterial
meningitis, head trauma or intracranial surgery. The causes and pathophysiological mechanisms are still poorly understood [
4]. Comorbidity is an important factor in the prognosis and post-operative outcome of shunt surgery for iNPH [
5].
Cardiovascular risk factors and subsequent vascular disease may contribute to the development of iNPH [
6-
8].
INPH is considered sporadic but there are data of familial clusters of
iNPH suggesting at least some kind of genetic influence or propensity
for developing iNPH [
9,
10]. The first adult familial NPH case was reported in 1984 by Portonoy, et al. [
11] and recently by Cusimano, et al. [
12], Takahashi, et al. [
13], Mc Girr and Cusimano [
14] and Liouta, et al. [
15].
Familial cases of congenital hydrocephalus have often been reported and
may result from distinct monogenic disorders or may be multifactorial
determined [
16]. We report iNPH in two adult identical twins.
ase Presentations
Case I
A 73-year-old woman with chronic obstructive
pulmonary disease,
without any other significant medical problems. Her relatives had
noticed personality changing in the last few years. At the age of 71 she
developed gait disturbance. She felt initially that she was unsteady
and after a while she began to walk with a cane. Walking difficulties
were accentuated and she became more dependent on a cane or walker in a
period of one year. She also experienced worse memory and daytime
fatigue and she also described frequent urination than before.
Neurological examination assessment showed gait disturbance and
cognitive impairment, Mini Mental State Examination (MMSE) 26/30.
Neurobehavioral Cognitive Status Examination (NCSE) revealed mild
impairment of design capacity. On Magnetic Resonance Imaging (MRI) of
the brain there was an enlargement of the ventricles (Evans´ index:
0.38, third ventricle, measuring approximately 13 mm) with a narrowing
of the subarachnoid space and cortical sulci at the high convexity of
the cerebrum (
Figure 1) which is consistent with the reported features of MRI in iNPH [
17,
18].
Lumbar CSF-pressure was 90 mmH20 and the CSF was acellular with normal
amounts of glucose and protein. CSF-neurodegenerative markers were
normal, with Tau at 180 ng/L, beta-Amyloid at 580 ng/L, Fosfo-Tau at 26
ng/L and NFp at 570 ng/L. Infusion test showed a start pressure of 9 kPa
and resistance to CSF outflow (Rout) at 8.7 kPa. There was a marked,
transient improvement in gait for several hours after a spinal tap-test
and a ventriculoperitoneal shunt was placed. There was an initial
improvement 3 month after surgery. At the age of 77 died from malign
melanoma with metastases in the lungs.
Figure 1: MRI showed an enlargement of the
ventricles (Evans´ index: 0.38, third ventricle, measuring approximately
13 mm) with a narrowing of the subarachnoid space and cortical sulci at
the high convexity of the cerebrum.
Case II
A 75-year-old woman, with a medical history of surgery for atoxic
multinodular struma, mild mitral valve insufficiency and a previous
heart infarction referred to the neurology department because of
unsteady and staggering gait for two years. She also described cognitive
decline and a urination urgency but not incontinence. Brain MRI showed
an enlargement of the ventricles (Evans index :0.38, third ventricle,
measuring approximately 12 mm) with a narrowing of the subarachnoid
space and cortical sulci at the high convexity of the cerebrum which is
consistent with the reported features of MRI in iNPH (Figure 1).
Neurological examination showed gait disturbance and
cognitive
impairment (MMSE 27/30). The patient was diagnosed as having iNPH and a
ventriculoperitoneal shunt operation was performed. There was an
improvement 3 month after surgery but at the 12-months post-operative
control she was worse at the motor tests and further results indicated a
shunt dysfunction why she subsequently underwent a shunt revision with
good results. At the age of 82 she had an ischemic stroke with a left
sided hemiparesis and dysarthria.
Discussion
A
thorough explanation of the pathogenesis of iNPH is yet to be presented
but some clues are known. Small vessel disease is a risk factor and
seems to play an important role but the link to a disturbed CSFdynamics
is not described [
8].
As in many diseases there may be several different pathways in the
pathogenesis and it is likely that iNPH in the future can be divided in
different kind of NPH. The most common
neuropathologies in patients with iNPH are vascular and AD-related changes [
19]. Amyloid plaque has been reported in
brain
biopsies from patients with iNPH and proposed as a significant feature
of the pathology. In iNPH patients the rate of amyloid deposition is
higher than in cognitively normal elderly subjects, but no differences
in the probability of the apoE4 carriers observed [
20].
Presence of apolipoprotein E ε4 (APOE ε4) allele is associated with
increased risk of AD. The APOE distribution did not differ significantly
between the iNPH patients and control population [
21]. Besides small vascular disease
Alzheimer’s disease (AD) coexists frequently [
5]. Frontotemporal dementia (FTD) has been also listed as a comorbidity in iNPH [
22].
AD and FTD has a clear genetic component in their pathogenesis. In
literature it is described a patient with C9ORF72 expansionassociated
behavioural variant frontotemporal
dementia with gait disturbance and ventriculomegaly whose gait score increased after a ventriculoperitoneal shunt insertion [
23].
Prevalence of the C9ORF72 expansion in Finnish NPH-register reported as
greater than expected. Hence, there may also be a possible connection
between FTLD and iNPH. This raises the question of an unknown genetic
factor which can activate the mechanism for the development of the
disturbed CSFdynamics in iNPH.
A further indication of a genetic background in iNPH raises through a
Japanese study where a genome-wide screening for copy number loss of
the SFMBT1 gene was performed in patients with iNPH and asymptomatic
ventriculomegaly, where a segmental copy number loss of the SFMBT1 gene
was found [
24].
A segmental copy number loss in intron 2 of the gene in the SFMBT1 gene
in patients with shuntresponsive definite iNPH was more frequent than
in healthy elderly and PD patients [
10]. However, in another study, among Finnish iNPH patients, the copy number loss within intron 2 of SFMBT1 was less prevalent [
25,
10].
The prevalence of the copy number in the SFMBT1 gene was determined to
be 11% in Finnish iNPH-patients and 21% in Norwegian iNPH patients
compared to 37% in Finnish controls [
26].
The identical twins experienced the classic symptoms of iNPH at
approximately the same age. The radiological examinations were typical
for iNPH and they had no abnormality of CSF and no known cause of
secondary NPH, thus they fulfilled the currently accepted clinical and
laboratory criteria for the diagnosis of idiopathic normal pressure
hydrocephalus also becoming markedly improved after institution of the
ventriculoperitoneal shunt. Both patients had normal results for
neurodegenerative markers for dementia, Alzheimer’s disease and frontal
lobe atrophy. Unfortunately, one of the twins has passed away and we
have therefore not the possibility to see if they carry the same ApoE
genotype and SFMBT1 gene. The increasing reports on familial iNPH
indicate a potential genetic component. Except from iNPH and sNPH a
third form of NPH, familial NPH (fNPH) is being widely recognized. Our
case reinforces the suspicion of fNPH.
Conclusion
Although
a genetic predisposition for iNPH is proposed further studies are
needed to approve the heritability of iNPH. This is of high importance,
as the number of familial NPH cases has increased over recent years. It
is important to make DNA analysis in future familial cases of iNPH.
Consent for Publication
The
authors have the written consent to publish this case from the patient
who is still in life. She gave her consent to use data for her sister on
target to improve iNPH investigation and therapy in the future.
Availability of Data and Material
We
used the data from our Cambio COSMIC Healthcare System, which is a
digital comprehensive healthcare system installed in all clinics in our
region. Radiological material obtained through Sectra Image Display
System 7.
Authors’ Contributions
Fredrik
Lundin and Andreas Eleftheriou were the neurologists who performed the
neurological investigation. Andreas Eleftheriou was the major
contributor in writing the manuscript.
Acknowledgements
Thanks
to physiotherapist Johanna Rydja and occupational therapist Katarina
Owen for their assessments of motor and cognitive function,
respectively.
References
- Marmarou A, Young HF, Aygok GA, Sawauchi S, Tsuji O, et al. (2005)
Diagnosis and management of idiopathic normal-pressure hydrocephalus: A
prospective study in 151 patients. J Neurosurg 102: 987-997.
- Hakim S, Adams RD (1965)
The special clinical problem of symptomatic hydrocephalus with normal
cerebrospinal fluid pressure. Observations on cerebrospinal fluid
hydrodynamics. J Neurol Sci 2: 307-327.
-
- Shenkin HA, Greenberg JO, Grossman CB (1975) Ventricular size after shunting for idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 38: 833-837.
- Hamlat A, Adn M, Sid-ahmed S, Askar B, Pasqualini E (2006)
Theoretical considerations on the pathophysiology of normal pressure
hydrocephalus (NPH) and NPH-related dementia. Med Hypotheses 67:
115-123.
- Malm J, Graff-Radford NR, Ishikawa M, Kristensen B, Leinonen V, et al. (2013)
Influence of comorbidities in idiopathic normal pressure hydrocephalus:
Research and clinical care. A report of the ISHCSF task force on
comorbidities in INPH. Fluids Barriers CNS 10: 22.
- Kato T, Sato H, Emi M, Seino T, Arawaka S, et al. (2011)
Segmental copy number loss of SFMBT1 gene in elderly individuals with
ventriculomegaly: A community-based study. Intern Med 50: 297-303.
- Krauss JK, Regel JP, Vach W, Droste DW, Borremans JJ, et al. (1996)
Vascular risk factors and arteriosclerotic disease in idiopathic
normal-pressure hydrocephalus of the elderly. Stroke 27: 24-29.
- Israelsson H, Carlberg B, Wikkelsö C, Laurell K, Kahlon B, et al. (2017) Vascular risk factors in INPH: A prospective case-control study (the INPH-CRasH study). Neurology 88: 577-585.
- Huovinen J, Kastinen S, Komulainen S, Oinas M, Avellan C, et al. (2016) Familial idiopathic normal pressure hydrocephalus. J Neurol Sci 368: 11-18.
- Sato H, Takahashi Y, Kimihira L, Iseki C, Kato H, et al. (2016)
A segmental copy number loss of the SFMBT1 gene is a genetic risk for
shunt-responsive, idiopathic Normal Pressure Hydrocephalus (iNPH): A
case-control study. PLoS One 11: e0166615.
- Portenoy RK, Berger A, Gross E (1984) Familial occurrence of idiopathic normal-pressure hydrocephalus. Arch Neurol 41: 335-337.
- Cusimano MD, Rewilak D, Stuss DT, Barrera-Martinez JC, Salehi F, et al. (2011) Normal-pressure hydrocephalus: Is there a genetic predisposition? Can J Neurol Sci 38: 274-281.
- Takahashi Y, Kawanami T, Nagasawa H, Iseki C, Hanyu H, et al. (2013)
Familial normal pressure hydrocephalus (NPH) with an autosomal-dominant
inheritance: A novel subgroup of NPH. J Neurol Sci 308: 149-151.
- Mc Girr A, Cusimano MD (2012)
Familial aggregation of idiopathic normal pressure hydrocephalus: Novel
familial case and a family study of the NPH triad in an iNPH patient
cohort. J Neurol Sci 321: 82-88.
- Liouta E, Liakos F, Koutsarnakis C, Katsaros V, Stranjalis G, et al. (2014) Novel case of familial normal pressure hydrocephalus. Psychiatry Clin Neurosci 68: 583-584.
- Chalmers RM, Andreae L, Wood NW, Raj RVKD, Casey ATH, et al. (1999) Familial hydrocephalus. J Neurol Neurosurg Psychiatry 67: 410-411.
- Gallia GL, Rigamonti D, Williams MA (2006) The diagnosis and treatment of idiopathic normal pressure hydrocephalus. Nat Clin Pract Neurol 2: 375-381.
- Kitagaki H, Mori E, Ishii K, Yamaji S, Hirono N, et al. (1998) CSF spaces in idiopathic normal pressure hydrocephalus: Morphology and volumetry. AJNR Am J Neuroradiol 19: 1277-1284.
- Leinonen V, Koivisto AM, Savolainen S, Rummukainen J, Sutela A, et al. (2012)
Post-mortem findings in 10 patients with presumed normal-pressure
hydrocephalus and review of the literature. Neuropathol Appl Neurobiol
38: 72-86.
- Bundo M, Nakamura A, Kato T, Niida S, Iwata K, et al. (2015)
Amyloid Deposition and ApoE4 Carriers in Idiopathic Normal Pressure
Hydrocephalus. Fluids and Barriers of the CNS 12.Suppl 1: 5.
- Yang Y, Tullberg M, Mehlig K, Rosengren A, Torén K, et al. (2016) The APOE genotype in idiopathic normal pressure hydrocephalus. PLoS One 11: e0158985.
- Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM, et al. (2005) Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery57: S2-4-16.
- Korhonen VE, Solje E, Suhonen NM, Rauramaa T, Vanninen R, et al. (2017)
Frontotemporal dementia as a comorbidity to idiopathic normal pressure
hydrocephalus (iNPH): A short review of literature and an unusual case.
Fluids Barriers CNS 14: 10.
- Kato T, Iseki C, Takahashi Y, Wada M, Kawanami T, et al. (2010)
iNPH (Idiopathic normal pressure hydrocephalus) and AVIM (asymptomatic
ventriculomegaly with features of iNPH on MRI). Rinsho Shinkeigaku 50:
963-965.
- Huovinen
J (2017) The copy number loss in the intron two of the SFMBT1 among
Finnish INPHâ€patients and families, Hydrocephalus 2017, the Ninth Annual
Meeting of the International Society for Hydrocephalus and CSF
disorders (Hydrocephalus Society).
- Korhonen
V (2017) The copy number loss in the intron two of the SFMBT1 among
Finnish INPHâ€patients and families, Hydrocephalus 2017, the Ninth Annual
Meeting of the International Society for Hydrocephalus and CSF
disorders (Hydrocephalus Society).