Home / Chemistry / Head loses in horizontal and vertical orificemeter: a comparative analysis with application of statistical method

Head loses in horizontal and vertical orificemeter: a comparative analysis with application of statistical method

 

Table Of Contents


Thesis Abstract

Abstract
This research project focuses on comparing the head losses in horizontal and vertical orificemeters through a detailed analysis using statistical methods. Orificemeters are widely used in fluid mechanics to measure the flow rate of fluids in pipelines. Understanding the head losses associated with different types of orificemeters is crucial for accurate flow rate measurements and efficient system design. The study involves conducting experiments on both horizontal and vertical orificemeters under various flow conditions. Pressure differentials across the orifices are measured to determine the head loss in each configuration. The experiments are repeated multiple times to ensure the reliability of the data collected. Statistical analysis is applied to the experimental data to compare the head losses in horizontal and vertical orificemeters. The analysis includes calculating mean head losses, standard deviations, and confidence intervals for each type of orificemeter. Additionally, hypothesis testing is performed to determine if there is a significant difference in head losses between the two configurations. The results of the study indicate that horizontal orificemeters tend to have lower head losses compared to vertical orificemeters under similar flow conditions. The statistical analysis confirms this finding with a high level of confidence. The mean head loss values for horizontal orificemeters are significantly lower than those for vertical orificemeters, with a p-value below the specified significance level. Practical implications of these findings are discussed, highlighting the potential benefits of using horizontal orificemeters in applications where minimizing head losses is critical. Engineers and designers can use this information to make informed decisions when selecting orificemeter configurations for specific fluid flow systems. Overall, this research contributes to the existing knowledge on head losses in orificemeters and provides valuable insights into the performance differences between horizontal and vertical configurations. The application of statistical methods enhances the credibility of the findings and demonstrates the importance of rigorous data analysis in fluid mechanics research. Further studies could explore additional factors that may influence head losses in orificemeters, expanding the scope of this research area.

Thesis Overview

INTRODUCTION
1.1. Background of the study
Fluid mechanics deals with the study of all fluids under static and dynamic situations. Fluid mechanics is a branch of continuous mechanics which deals with a relationship between forces, motions, and statical conditions in a continuous material. This study area deals with many and diversified problems such as surface tension, fluid statics, flow in enclose bodies, or flow round bodies (solid or otherwise), flow stability, etc. In fact, almost any action a person is doing involves some kind of a fluid mechanics problem. Researchers distinguish between orderly flow and chaotic flow as the laminar flow and the turbulent flow. The fluid mechanics can also be distinguished between a single phase flow and multiphase flow (flow made more than one phase or single distinguishable material).
Fluid flow in circular and noncircular pipes is commonly encountered in practice. The hot and cold water that we use in our homes is pumped through pipes. Water in a city is distributed by extensive piping networks. Oil and natural gas are transported hundreds of miles by large pipelines. Blood is carried throughout our bodies by veins. The cooling water in an engine is transported by hoses to the pipes in the radiator where it is cooled as it flows. Thermal energy in a hydraulic space heating system is transferred to the circulating water in the boiler, and then it is transported to
12
the desired locations in pipes. Fluid flow is classified as external and internal, depending on whether the fluid is forced to flow over a surface or in a conduit. Internal and external flows exhibit very different characteristics. In this chapter we consider internal flow where the conduit is completely filled with the fluid, and flow is driven primarily by a pressure difference. This should not be confused with open-channel flow where the conduit is partially filled by the fluid and thus the flow is partially bounded by solid surfaces, as in an irrigation ditch, and flow is driven by gravity alone. We then discuss the characteristics of flow inside pipes and introduce the pressure drop correlations associated with it for both laminar and turbulent flows. Finally, we present the minor losses and determine the pressure drop and pumping power requirements for piping systems. Pipes 611
14–5Liquid or gas flow through pipes or ducts is commonly used in heating and cooling applications, and fluid distribution networks. The fluid in such applications is usually forced to flow by a fan or pump through a flow section. We pay particular attention to friction, which is directly related to the pressure drop and head loss during flow through pipes and ducts. The pressure drop is then used to determine the pumping power requirement. A typical piping system
involves pipes of different diameters connected to each other by various fittings or elbows to direct the fluid, valves to control the flow rate, and pumps to pressurize the fluid. The terms pipe, duct, and conduit are usually used interchangeably for flow sections. In general, flow sections of circular cross section are referred to as
13
pipes (especially when the fluid is a liquid), and flow sections of noncircular cross section as ducts (especially when the fluid is a gas). Small-diameter pipes are usually referred to as tubes. Given this uncertainty, we will use more descriptive phrases (such as a circular pipe or a rectangular duct) whenever necessary to avoid any misunderstandings. You have probably noticed that most fluids, especially liquids, are transported in circular pipes. This is because pipes with a circular cross section can withstand large pressure differences between the inside and the outside without undergoing significant distortion. Noncircular pipes are usually used in applications such as the heating and cooling systems of buildings where the pressure difference is relatively small, the manufacturing and installation costs are lower, and the available space is limited for duct work. Although the theory of fluid flow is reasonably well understood, theoretical solutions are obtained only for a few simple cases such as fully developed laminar flow in a circular pipe. Therefore, we must rely on experimental results and empirical relations for most fluid-flow problems rather than closed form analytical solutions. Noting that the experimental results are obtained under carefully controlled laboratory conditions, and that no two systems are exactly alike, we must not be so naive as to view the results obtained as ―exact.‖ The fluid velocity in a pipe changes from zero at the surface because of the no-slip condition to a maximum at the pipe center. In fluid flow, it is convenient to work with an average or mean velocity _m, which remains constant in incompressible flow when the cross-sectional area of the pipe is
14
constant. The mean velocity in heating and cooling applications may change somewhat because of changes in density with temperature. But, in practice, we evaluate the fluid properties at some average temperature and treat them as constants. The convenience of working with constant properties usually more than justifies the slight loss in accuracy.
Also, the friction between the fluid layers in a pipe does cause a slight rise in fluid temperature as a result of the mechanical energy being converted to sensible thermal energy. But this temperature rise due to fictional heating is usually too small to warrant any consideration in calculations and thus is disregarded. For example, in the absence of any heat transfer, no noticeable difference can
be detected between the inlet and exit temperatures of water flowing in a pipe. The primary consequence of friction in fluid flow is pressure drop, and thus any significant temperature change in the fluid is due to heat transfer.PDF

Blazingprojects Mobile App

📚 Over 50,000 Research Thesis
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Thesis-to-Journal Publication
🎓 Undergraduate/Postgraduate Thesis
📥 Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Chemistry. 3 min read

Development of Novel Catalysts for Green Chemistry Applications...

The research project titled "Development of Novel Catalysts for Green Chemistry Applications" aims to address the growing need for sustainable and env...

BP
Blazingprojects
Read more →
Chemistry. 4 min read

Synthesis and Characterization of Novel Metal-Organic Frameworks for Gas Storage App...

The project titled "Synthesis and Characterization of Novel Metal-Organic Frameworks for Gas Storage Applications" aims to investigate the synthesis a...

BP
Blazingprojects
Read more →
Chemistry. 3 min read

Synthesis and Characterization of Novel Metal-Organic Frameworks for Gas Adsorption ...

The project titled "Synthesis and Characterization of Novel Metal-Organic Frameworks for Gas Adsorption Applications" aims to explore the synthesis an...

BP
Blazingprojects
Read more →
Chemistry. 2 min read

The Development of Novel Organic Photocatalysts for Efficient Solar Fuel Production...

The project titled "The Development of Novel Organic Photocatalysts for Efficient Solar Fuel Production" aims to address the growing demand for sustai...

BP
Blazingprojects
Read more →
Chemistry. 2 min read

Investigating the synthesis and characterization of novel metal-organic frameworks f...

The project titled "Investigating the synthesis and characterization of novel metal-organic frameworks for gas storage applications" aims to explore t...

BP
Blazingprojects
Read more →
Chemistry. 2 min read

Development of Novel Catalysts for Green Chemistry Applications...

The project titled "Development of Novel Catalysts for Green Chemistry Applications" focuses on the design and synthesis of innovative catalysts to pr...

BP
Blazingprojects
Read more →
Chemistry. 4 min read

Development of Novel Catalysts for Green Chemistry Applications...

The project titled "Development of Novel Catalysts for Green Chemistry Applications" aims to address the growing global concern regarding environmenta...

BP
Blazingprojects
Read more →
Chemistry. 4 min read

Investigation of the effects of different catalysts on the rate of a chemical reacti...

The project titled "Investigation of the effects of different catalysts on the rate of a chemical reaction" aims to explore the impact of various cata...

BP
Blazingprojects
Read more →
Chemistry. 2 min read

Synthesis and Characterization of Novel Metal-Organic Frameworks for Gas Separation ...

The project titled "Synthesis and Characterization of Novel Metal-Organic Frameworks for Gas Separation Applications" aims to explore the development ...

BP
Blazingprojects
Read more →
WhatsApp Click here to chat with us