Due to rapid growth of home entertainment consumer market, video technology has been continuously pushed to deliver sharper pictures with higher resolution. This has brought about stringent requirements on the video analog front end, which often coupled with the low power and low voltage regulations had to deal with short channel effects of the deep submicron CMOS processes.
This thesis presents the design of a fully differential programmable gain amplifier, as a sub-circuit of a larger video digitizing IC designed at division of Electronic Systems. The switched capacitor architecture of the PGA does not only buffer the signal, but performs compensation for the sync-tip of analog video signal.
The pseudo differential OTA eliminates tail current source and maintains high signal swing and has efficient common mode feed forward mechanism. When coupled with a similar stage provides inherent common moode feedback without using an additional SC-CMFB block.
The PGA has been implemented using a 65 nm digital CMOS process. Expected difficulties in a 1.2 V OTA design make themselves evident in 65 nm, which is why cascaded OTA structures were inevitable for attaining gain specification of 60 dB. Nested Miller compensation with a pole shifting source follower, stabilizes the multipole system. The final circuit attains up to 200 MHz bandwidth and maintains high output swing of 0.85 V. High slew rate and good common mode and power supply rejection are observed. Noise requirements require careful design of input differential stage. Although output source follower stabilized the system, it reduces significant bandwidth and adds to second order non-linearity.
📚 Over 50,000 Research Thesis
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Thesis-to-Journal Publication
🎓 Undergraduate/Postgraduate Thesis
📥 Instant Whatsapp/Email Delivery
The project titled "Design and Implementation of Smart Grid Technology for Renewable Energy Integration in Microgrids" focuses on the development and ...
The project titled "Design and Implementation of an Energy-Efficient Smart Home System Using IoT Technology" focuses on the development of a cutting-e...
The project on the "Design and Implementation of a Smart Grid System for Efficient Energy Management" aims to address the growing need for sustainable...
The project titled "Design and Implementation of a Smart Home Automation System Using Internet of Things (IoT) Technology" aims to explore the integra...
The project titled "Design and implementation of a smart home energy management system using Internet of Things (IoT) technology" aims to address the ...
The project titled "Design and Implementation of Real-Time Power Monitoring System Using IoT Technology for Smart Homes" focuses on the development of...
The project on "Design and Implementation of Power Factor Correction Circuit for Residential Applications" aims to address the issue of power factor i...
The project "Design and Implementation of a Smart Grid System Using IoT Technology in a Local Power Distribution Network" aims to revolutionize the tr...
The project titled "Design and Implementation of an IoT-based Home Energy Management System" aims to address the growing demand for efficient energy m...