Cover page i
Dedication ii
Acknowledgement iii
Tables of Content iv
Table of figures vi
TABLE OF FIGURES
Fig 1: Lowering of vapour pressure by a non-volatile solute.
Fig 2: Negative and positive deviation
Fig 3: Measurements of vapour pressure of aqueous solutions with a manometer
Fig 4: Ostwald-Walker method of measuring the relative lowering of vapour pressure
Fig 5: A graph of vapour pressure against temperature
Fig 6: Landberger-Walker method
Fig 7: Beckmann thermometer reading to 0.01K
Fig 8: Cottrell’s Apparatus
Fig 9: Relationship between lowering of vapour pressure and depression of freezing point
Fig 10: Relation between lowering of vapour pressure and depression of freezing point
Fig 11: Determination of depression of melting point by capillary method
Fig 12: Determination of depression of melting point by electrical method
Fig 13: The equilibrium involved in the calculation of osmotic pressure.
Fig 14: A simple version of the osmotic pressure experiment
Introduction:
The knowledge of the laws of solutions has been said, to be important because almost all the chemical processes which occur in nature, whether in animal or vegetable organisms, or in the non-living surface of the earth, and also those which are carried out in the laboratory, take place between substances in solution. For example, a sound judgment regarding physiological processes is impossible without this knowledge; and this holds true for the greater number of the scientifically and technically important reactions. Solutions are more important than gases, for the latter seldom react together at ordinary temperatures, whereas solutions present the best conditions for the occurrence of all chemical processes (Homer, 1980).
A dilute solution has a low concentration of the solute compared to the solvent. The opposite of a dilute solution is a concentrated solution, which has high levels of solute in the mixture.
Dilute solutions containing non-volatile solute exhibit the following properties:
(1) Lowering of the Vapour Pressure
(2) Elevation of the Boiling Point
(3) Depression of the Freezing Point
(4) Osmotic Pressure
The essential feature of these properties is that they depend only on the number of solute particles present in solution. Being closely related to each other through a common explanation, these have been grouped together under the class name Colligative Properties (Greek colligatus = Collected together) (Bahl, et al., 2012).
Physical properties can be divided into two categories. Extensive properties (such as mass and volume) depend on the size of the sample. Intensive properties (such as density and concentration) are characteristic properties of the substance; they do not depend on the size of the sample being studied. This section introduces a third category that is a subset of the intensive properties of a system. This third category, known as colligative properties, can only be applied to solutions. By definition, one of the properties of a solution is a colligative property if it depends only on the ratio of the number of particles of solute and solvent in the solution, not the identity of the solute.
A colligative property may be defined as one which depends on the number of particles in solution and not in any way on the size or chemical nature of the particles. In other words, colligative properties are a set of solution properties that can be reasonably approximated by assuming that the solution is ideal.
Here we consider only properties which result from the dissolution of nonvolatile solute in a volatile liquid solvent. They are essentially solvent properties which are changed by the presence of the solute. The solute particles displace some solvent molecules in the liquid phase and therefore reduce the concentration of solvent, so that the colligative properties are independent of the nature of the solute.
For a given solute-solvent mass ratio, all colligative properties are inversely proportional to solute molar mass.
Measurement of colligative properties for a dilute solution of a non-ionized solute such as urea or glucose in water or another solvent can lead to determinations of relative molar masses, both for small molecules and for polymers which cannot be studied by other means. Alternatively, measurements for ionized solutes can lead to an estimation of the percentage of dissociation taking place.
Colligative properties are mostly studied for dilute solutions, whose behavior may often be approximated as that of an ideal solution.
📚 Over 50,000 Research Thesis
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Thesis-to-Journal Publication
🎓 Undergraduate/Postgraduate Thesis
📥 Instant Whatsapp/Email Delivery
The project titled "Development of a Novel Process for the Sustainable Production of Biofuels from Algae" aims to address the pressing need for sustai...
The project "Optimization of Biofuel Production from Algae Biomass Using Supercritical Fluid Extraction" aims to explore a sustainable and efficient m...
The project titled "Optimization of Reaction Conditions for Biodiesel Production Using Heterogeneous Catalysts" aims to address the growing demand for...
The project titled "Optimization of a Hydrogen Production Process using Renewable Energy Sources in a Chemical Plant" aims to address the increasing g...
The project titled "Design and Optimization of a Sustainable Process for Biodiesel Production from Waste Cooking Oil" aims to address the significant ...
The project titled "Optimization of Chemical Reactor Design for Sustainable Production Processes" aims to address the critical need for sustainable pr...
The research project, titled "Optimization of Bioreactor Design for Enhanced Production of Biofuels," aims to address the growing demand for sustainab...
The project titled "Optimization of Biogas Production from Food Waste through Anaerobic Digestion" aims to address the pressing need for sustainable w...
The project titled "Design and Optimization of a Chemical Process for Renewable Energy Production" aims to address the growing global demand for susta...