Home / Chemical engineering / Design of a plant to produce 60,000 metric tonnes of vinegar from palm wine per year chemical engineering project topics

Design of a plant to produce 60,000 metric tonnes of vinegar from palm wine per year chemical engineering project topics

 

Table Of Contents


Thesis Abstract

Abstract
The production of vinegar from palm wine is a promising venture due to the increasing demand for vinegar in various industries. This project focuses on designing a plant capable of producing 60,000 metric tonnes of vinegar per year from palm wine. The plant will utilize chemical engineering principles to convert the alcohol in palm wine into acetic acid through fermentation and oxidation processes. Various unit operations such as fermentation vessels, distillation columns, and filtration systems will be incorporated into the plant design to ensure efficient and cost-effective production of high-quality vinegar. The process will involve stages such as sterilization of palm wine, inoculation with acetic acid bacteria, fermentation, and subsequent oxidation to produce vinegar. The plant layout will be optimized to maximize production capacity while minimizing energy consumption and waste generation. Overall, this project aims to provide a comprehensive design of a vinegar production plant that meets the specified annual production target using palm wine as the raw material.

Thesis Overview

1.0     INTRODUCTION      
1.1     Design Philosophy

This design philosophy adopted the best environmental management practices (BEMPs) which emphasizes the source control of all wastes generated at a facility through relatively inexpensive adjustments to process and/or operating procedures in order safe cost and also ensure that the vinegar plant is safe and profitable.

In this philosophy, the control, electrical, mechanical, and piping engineers on a project would start their work once the P&IDs are complete and the vinegar plant is found to be economically viable.

1.2     Background and Motivation of Study    

Vinegar is a liquid produced from the fermentation of ethanol that yields a key ingredient, acetic acid from acetic acid bacteria. Pooja and Soumitra (2013) defined vinegar as a liquid fit for human consumption, produced from suitable raw materials of agricultural origin containing starch, sugars, or starch and sugars by the process of double fermentation, alcoholic and acetous, containing a specified amount of acetic acid. Vinegar fermentation is essentially a two stage process. The first stage involves the anaerobic conversion of fermentable sugars to ethanol by yeasts, usually Saccharomyces species while the second stage is the aerobic oxidation of ethanol to acetic acid by bacteria, usually Acetobacter species. It must contain not less than 4% acetic acid (Maal et al., 2010). The acetic acid concentration ranges typically from 4-8% by volume for table vinegar (typically 5%) and higher concentrations for pickling (up to 18%) (Kanchanarach et al.,2010). The application of vinegar is quite vast. It could be used in dressing salads, manufacture of useful medicines, preservation of food, provision of antioxidants or as an antibacterial agent (Johnston et al., 2004; Shizuma et al., 2011; Soltan and Shehata, 2012). Vinegar has historically been recognized as having a number of health benefits due to therapeutic compounds including: gallic acid, catechin, ephicatechin, chlorogenic acid, caffeic acid, pcoumaric acid. It has physiological effects such as invigorating (Johnston, 2005; Johnston et al., 2004), regulator of blood pressure (Kondo and Tayama, 2001), diabetes mellitus regulator (Ostman et al., 2005), appetite stimulator, digestion and absorption of calcium (Ndoye et al., 2007). It is also known to be effective in cancers (Xibib et al., 2003), osteoporosis (Kishi and Fukaya, 1999) and neurological diseases (Davalos et al., 2005). Traditionally, vinegar is widely produced from rice, malt, apples, wine, molasses, dates, sorghum, apples, pears, grape, berries, melons, coconut, honey, beer, maple syrup, potatoes, beets, malt grains and whey and various other agricultural materials. However, alternative processes have been extensively explored because of the high production cost associated with the utilization of various sugary and starchy raw materials, ultimately used as food. Therefore, vinegar production from agricultural wastes could be a possible alternative because it has the potential to realize cheaper production of vinegar with low environmental impact by the effective utilization of renewable resources such as agricultural wastes. Vinegar has been produced from pineapple peel (Sossou et al., 2009; Raji et al., 2012; Roda et al., 2014; Umaru et al., 2015), sweet lime peel (Priyadarshini et al., 2014); papaya peel (Vikas and Umesh, 2014), decomposed fruits (Diba et al., 2015) and other fruit waste (Kulkarni, 2015).

1.3     Justification of the Design    

Vinegar has been produced by several different methods. In all known methods, the most common have been obtained from oxidation of ethanol. However, the starting material which gives the alcohol to be oxidized makes the difference in various designs.

1.4     Problem Statement      

Vinegar has been used as a medicine, corrosive agent, pickling agent and can be directly consumed in diluted form as a beverage. In the food industry, vinegar is used mainly as an acidulant, but it has also many other food processing applications. It is found in hundreds of different processed foods, including salad dressings, mayonnaise, mustard, ketchup, bread and bakery products, canned foods, marinades and the current falling wine consumption have favoured an increase in vinegar production (De Oryet et al., 2002).

Traditionally, vinegar is widely produced from rice, malt, apples, wine, molasses, dates, sorghum, apples, pears, grape, berries, melons, coconut, honey, beer, maple syrup, potatoes, beets, malt grains and whey and various other agricultural materials. However, alternative processes have been extensively explored because of the high production cost associated with the utilization of various sugary and starchy raw materials, ultimately used as food. Therefore, this design project seeks to utilized palm wine for the production of vinegar.

Despite the vast application of vinegar, there is no available data for industrial production of vinegar in Nigeria. Traditional method is what is being utilized to produce vinegar just for personal consumption. It’s sad to know that most of the vinegar consumed within the shores of Nigeria was imported despite her huge agricultural prowess.

With the Nigerian economy currently grappled with recession and the prospect in industrial production of vinegar; since there is a market for it already come the motivation for this design project. The thesis aims the designing a plant to produce 60,000 ton of vinegar per year, bearing in mind that the plant must be cost effective and hazard free and the vinegar product must meet the quality specification.


Blazingprojects Mobile App

πŸ“š Over 50,000 Research Thesis
πŸ“± 100% Offline: No internet needed
πŸ“ Over 98 Departments
πŸ” Thesis-to-Journal Publication
πŸŽ“ Undergraduate/Postgraduate Thesis
πŸ“₯ Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Chemical engineering. 4 min read

Development of a Novel Process for the Sustainable Production of Biofuels from Algae...

The project titled "Development of a Novel Process for the Sustainable Production of Biofuels from Algae" aims to address the pressing need for sustai...

BP
Blazingprojects
Read more β†’
Chemical engineering. 4 min read

Optimization of Biofuel Production from Algae Biomass Using Supercritical Fluid Extr...

The project "Optimization of Biofuel Production from Algae Biomass Using Supercritical Fluid Extraction" aims to explore a sustainable and efficient m...

BP
Blazingprojects
Read more β†’
Chemical engineering. 2 min read

Optimization of Reaction Conditions for Biodiesel Production Using Heterogeneous Cat...

The project titled "Optimization of Reaction Conditions for Biodiesel Production Using Heterogeneous Catalysts" aims to address the growing demand for...

BP
Blazingprojects
Read more β†’
Chemical engineering. 2 min read

Optimization of a Hydrogen Production Process using Renewable Energy Sources in a Ch...

The project titled "Optimization of a Hydrogen Production Process using Renewable Energy Sources in a Chemical Plant" aims to address the increasing g...

BP
Blazingprojects
Read more β†’
Chemical engineering. 3 min read

Design and Optimization of a Sustainable Process for Biodiesel Production from Waste...

The project titled "Design and Optimization of a Sustainable Process for Biodiesel Production from Waste Cooking Oil" aims to address the significant ...

BP
Blazingprojects
Read more β†’
Chemical engineering. 2 min read

Optimization of Chemical Reactor Design for Sustainable Production Processes...

The project titled "Optimization of Chemical Reactor Design for Sustainable Production Processes" aims to address the critical need for sustainable pr...

BP
Blazingprojects
Read more β†’
Chemical engineering. 3 min read

Optimization of Bioreactor Design for Enhanced Production of Biofuels...

The research project, titled "Optimization of Bioreactor Design for Enhanced Production of Biofuels," aims to address the growing demand for sustainab...

BP
Blazingprojects
Read more β†’
Chemical engineering. 4 min read

Optimization of Biogas Production from Food Waste through Anaerobic Digestion...

The project titled "Optimization of Biogas Production from Food Waste through Anaerobic Digestion" aims to address the pressing need for sustainable w...

BP
Blazingprojects
Read more β†’
Chemical engineering. 3 min read

Design and Optimization of a Chemical Process for Renewable Energy Production...

The project titled "Design and Optimization of a Chemical Process for Renewable Energy Production" aims to address the growing global demand for susta...

BP
Blazingprojects
Read more β†’
WhatsApp Click here to chat with us