Home / Chemical engineering / Head loses in horizontal and vertical orificemeter: a comparative analysis with application of statistical method

Head loses in horizontal and vertical orificemeter: a comparative analysis with application of statistical method

 

Table Of Contents


Thesis Abstract

Abstract
This research project focuses on a comparative analysis of head losses in horizontal and vertical orificemeters, with the application of statistical methods to analyze the data. Orificemeters are widely used in fluid mechanics to measure the flow rate of fluids in pipelines. Understanding the head losses incurred in orificemeters is crucial for efficient fluid flow management and system design. The study involves conducting experiments with horizontal and vertical orificemeters to measure the head losses under varying flow conditions. The experimental setup includes precise measurement tools to capture accurate data on pressure differentials and flow rates. The data collected from the experiments is then analyzed using statistical methods to determine the significance of the differences in head losses between the two types of orificemeters. By comparing the head losses in horizontal and vertical orificemeters, this research aims to provide insights into the performance characteristics of these devices in practical applications. The findings from this study can help engineers and designers in selecting the most suitable orificemeter configuration based on specific project requirements and constraints. The statistical analysis of the data allows for a rigorous and systematic evaluation of the experimental results. By applying statistical methods such as hypothesis testing and analysis of variance, the research aims to establish the validity of the observed differences in head losses between horizontal and vertical orificemeters. This quantitative approach enhances the reliability and robustness of the research findings. Overall, this comparative analysis of head losses in horizontal and vertical orificemeters contributes to the existing body of knowledge on fluid flow measurement and orificemeter performance. The research findings are expected to offer valuable insights for engineers, researchers, and practitioners involved in fluid mechanics, hydraulic engineering, and related fields. The application of statistical methods adds a scientific rigor to the analysis, ensuring that the conclusions drawn from the study are statistically sound and reliable.

Thesis Overview

INTRODUCTION
1.1. Background of the study
Fluid mechanics deals with the study of all fluids under static and dynamic situations. Fluid mechanics is a branch of continuous mechanics which deals with a relationship between forces, motions, and statical conditions in a continuous material. This study area deals with many and diversified problems such as surface tension, fluid statics, flow in enclose bodies, or flow round bodies (solid or otherwise), flow stability, etc. In fact, almost any action a person is doing involves some kind of a fluid mechanics problem. Researchers distinguish between orderly flow and chaotic flow as the laminar flow and the turbulent flow. The fluid mechanics can also be distinguished between a single phase flow and multiphase flow (flow made more than one phase or single distinguishable material).
Fluid flow in circular and noncircular pipes is commonly encountered in practice. The hot and cold water that we use in our homes is pumped through pipes. Water in a city is distributed by extensive piping networks. Oil and natural gas are transported hundreds of miles by large pipelines. Blood is carried throughout our bodies by veins. The cooling water in an engine is transported by hoses to the pipes in the radiator where it is cooled as it flows. Thermal energy in a hydraulic space heating system is transferred to the circulating water in the boiler, and then it is transported to
12
the desired locations in pipes. Fluid flow is classified as external and internal, depending on whether the fluid is forced to flow over a surface or in a conduit. Internal and external flows exhibit very different characteristics. In this chapter we consider internal flow where the conduit is completely filled with the fluid, and flow is driven primarily by a pressure difference. This should not be confused with open-channel flow where the conduit is partially filled by the fluid and thus the flow is partially bounded by solid surfaces, as in an irrigation ditch, and flow is driven by gravity alone. We then discuss the characteristics of flow inside pipes and introduce the pressure drop correlations associated with it for both laminar and turbulent flows. Finally, we present the minor losses and determine the pressure drop and pumping power requirements for piping systems. Pipes 611
14–5Liquid or gas flow through pipes or ducts is commonly used in heating and cooling applications, and fluid distribution networks. The fluid in such applications is usually forced to flow by a fan or pump through a flow section. We pay particular attention to friction, which is directly related to the pressure drop and head loss during flow through pipes and ducts. The pressure drop is then used to determine the pumping power requirement. A typical piping system
involves pipes of different diameters connected to each other by various fittings or elbows to direct the fluid, valves to control the flow rate, and pumps to pressurize the fluid. The terms pipe, duct, and conduit are usually used interchangeably for flow sections. In general, flow sections of circular cross section are referred to as
13
pipes (especially when the fluid is a liquid), and flow sections of noncircular cross section as ducts (especially when the fluid is a gas). Small-diameter pipes are usually referred to as tubes. Given this uncertainty, we will use more descriptive phrases (such as a circular pipe or a rectangular duct) whenever necessary to avoid any misunderstandings. You have probably noticed that most fluids, especially liquids, are transported in circular pipes. This is because pipes with a circular cross section can withstand large pressure differences between the inside and the outside without undergoing significant distortion. Noncircular pipes are usually used in applications such as the heating and cooling systems of buildings where the pressure difference is relatively small, the manufacturing and installation costs are lower, and the available space is limited for duct work. Although the theory of fluid flow is reasonably well understood, theoretical solutions are obtained only for a few simple cases such as fully developed laminar flow in a circular pipe. Therefore, we must rely on experimental results and empirical relations for most fluid-flow problems rather than closed form analytical solutions. Noting that the experimental results are obtained under carefully controlled laboratory conditions, and that no two systems are exactly alike, we must not be so naive as to view the results obtained as ―exact.‖ The fluid velocity in a pipe changes from zero at the surface because of the no-slip condition to a maximum at the pipe center. In fluid flow, it is convenient to work with an average or mean velocity _m, which remains constant in incompressible flow when the cross-sectional area of the pipe is
14
constant. The mean velocity in heating and cooling applications may change somewhat because of changes in density with temperature. But, in practice, we evaluate the fluid properties at some average temperature and treat them as constants. The convenience of working with constant properties usually more than justifies the slight loss in accuracy.
Also, the friction between the fluid layers in a pipe does cause a slight rise in fluid temperature as a result of the mechanical energy being converted to sensible thermal energy. But this temperature rise due to fictional heating is usually too small to warrant any consideration in calculations and thus is disregarded. For example, in the absence of any heat transfer, no noticeable difference can
be detected between the inlet and exit temperatures of water flowing in a pipe. The primary consequence of friction in fluid flow is pressure drop, and thus any significant temperature change in the fluid is due to heat transfer.

Blazingprojects Mobile App

📚 Over 50,000 Research Thesis
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Thesis-to-Journal Publication
🎓 Undergraduate/Postgraduate Thesis
📥 Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Chemical engineering. 4 min read

Development of a Novel Process for the Sustainable Production of Biofuels from Algae...

The project titled "Development of a Novel Process for the Sustainable Production of Biofuels from Algae" aims to address the pressing need for sustai...

BP
Blazingprojects
Read more →
Chemical engineering. 4 min read

Optimization of Biofuel Production from Algae Biomass Using Supercritical Fluid Extr...

The project "Optimization of Biofuel Production from Algae Biomass Using Supercritical Fluid Extraction" aims to explore a sustainable and efficient m...

BP
Blazingprojects
Read more →
Chemical engineering. 4 min read

Optimization of Reaction Conditions for Biodiesel Production Using Heterogeneous Cat...

The project titled "Optimization of Reaction Conditions for Biodiesel Production Using Heterogeneous Catalysts" aims to address the growing demand for...

BP
Blazingprojects
Read more →
Chemical engineering. 4 min read

Optimization of a Hydrogen Production Process using Renewable Energy Sources in a Ch...

The project titled "Optimization of a Hydrogen Production Process using Renewable Energy Sources in a Chemical Plant" aims to address the increasing g...

BP
Blazingprojects
Read more →
Chemical engineering. 3 min read

Design and Optimization of a Sustainable Process for Biodiesel Production from Waste...

The project titled "Design and Optimization of a Sustainable Process for Biodiesel Production from Waste Cooking Oil" aims to address the significant ...

BP
Blazingprojects
Read more →
Chemical engineering. 2 min read

Optimization of Chemical Reactor Design for Sustainable Production Processes...

The project titled "Optimization of Chemical Reactor Design for Sustainable Production Processes" aims to address the critical need for sustainable pr...

BP
Blazingprojects
Read more →
Chemical engineering. 2 min read

Optimization of Bioreactor Design for Enhanced Production of Biofuels...

The research project, titled "Optimization of Bioreactor Design for Enhanced Production of Biofuels," aims to address the growing demand for sustainab...

BP
Blazingprojects
Read more →
Chemical engineering. 2 min read

Optimization of Biogas Production from Food Waste through Anaerobic Digestion...

The project titled "Optimization of Biogas Production from Food Waste through Anaerobic Digestion" aims to address the pressing need for sustainable w...

BP
Blazingprojects
Read more →
Chemical engineering. 4 min read

Design and Optimization of a Chemical Process for Renewable Energy Production...

The project titled "Design and Optimization of a Chemical Process for Renewable Energy Production" aims to address the growing global demand for susta...

BP
Blazingprojects
Read more →
WhatsApp Click here to chat with us