Home / Agricultural education / The effect of organic and inorganic fertilizers on cucurbita moschata.

The effect of organic and inorganic fertilizers on cucurbita moschata.

 

Table Of Contents


Chapter ONE

1.1 Introduction
1.2 Background of Study
1.3 Problem Statement
1.4 Objective of Study
1.5 Limitation of Study
1.6 Scope of Study
1.7 Significance of Study
1.8 Structure of the Research
1.9 Definition of Terms

Chapter TWO

2.1 Overview of Fertilizers
2.2 Types of Organic Fertilizers
2.3 Benefits of Organic Fertilizers
2.4 Types of Inorganic Fertilizers
2.5 Advantages of Inorganic Fertilizers
2.6 Comparison of Organic and Inorganic Fertilizers
2.7 Previous Studies on Fertilizers and Cucurbita Moschata
2.8 Impact of Fertilizers on Plant Growth
2.9 Environmental Effects of Fertilizer Use
2.10 Sustainable Fertilizer Practices

Chapter THREE

3.1 Research Design
3.2 Sampling Methods
3.3 Data Collection Techniques
3.4 Data Analysis Methods
3.5 Instrumentation
3.6 Research Ethics
3.7 Validity and Reliability
3.8 Limitations of the Methodology

Chapter FOUR

4.1 Overview of Findings
4.2 Analysis of Data
4.3 Comparison of Results with Hypotheses
4.4 Discussion on Fertilizer Impact
4.5 Factors Influencing Plant Growth
4.6 Environmental Considerations
4.7 Recommendations for Fertilizer Use
4.8 Implications for Future Research

Chapter FIVE

5.1 Summary of Findings
5.2 Conclusion
5.3 Contributions to the Field
5.4 Practical Implications
5.5 Recommendations for Future Studies

Thesis Abstract

Abstract
Cucurbita moschata, commonly known as butternut squash, is a popular and economically important cucurbit that is cultivated worldwide. The use of fertilizers is essential for optimizing the growth and yield of C. moschata. In this study, we investigated the effects of organic and inorganic fertilizers on the growth parameters, yield components, and fruit quality of C. moschata. The experiment was conducted in a randomized complete block design with three replications. The treatments included organic fertilizer (compost) and inorganic fertilizer (NPK 15-15-15). The results showed that the application of organic fertilizer significantly improved plant height, number of leaves, vine length, number of fruits per plant, fruit weight, and fruit length compared to the inorganic fertilizer treatment. Additionally, fruits from plants treated with organic fertilizer had higher TSS content, total sugar content, and ascorbic acid content compared to those treated with inorganic fertilizer. Furthermore, the organic fertilizer treatment resulted in higher nutrient content in the soil compared to the inorganic fertilizer treatment. The organic fertilizer treatment also led to a lower incidence of pest and disease infestation in C. moschata plants compared to the inorganic fertilizer treatment. Overall, the results of this study suggest that organic fertilizer is more effective than inorganic fertilizer in promoting the growth, yield, and fruit quality of Cucurbita moschata. The use of organic fertilizer not only enhances plant growth and yield but also improves the nutritional quality of the fruits. Additionally, organic fertilizers contribute to soil health and sustainability by increasing soil nutrient content and reducing the incidence of pests and diseases. This research provides valuable insights into the importance of choosing the right type of fertilizer for C. moschata cultivation. Farmers and agricultural practitioners can benefit from this study by implementing organic fertilizers in their cultivation practices to improve crop productivity and quality while maintaining soil health and sustainability. Further research is recommended to explore the long-term effects of organic and inorganic fertilizers on C. moschata cultivation and to optimize fertilizer application rates for maximum yield and quality.

Thesis Overview

Cucurbita moschata was discovered in southern Mexico around 5000 BCE and along the coast of Peru around 3000 BCE South America, is thought to be the secondary site of domestication. This species spread to northeastern Mexico by 1400 BCE and to the southwest U.S. by 900 CE. Cucurbita moschata made its way to the Gulf coast and Caribbean by way of early Spanish explorers. Crooknecks and cheese pumpkins, original to North America, were cultivated by colonists in the 1600s and variations can be found in India, southeastern Asia, Asia Minor and in Japan. By the 19th century Cucurbita moschata was established in northern Africa as well.

Cucurbitaceae is one of the largest families in vegetable kingdom consisting of largest number of edible type species. Pumpkin (Cucurbita moschata Poir.) is one such important vegetable belongs to family Cucurbitaceae. Pumpkin fruits are extensively used as vegetables both in immature and mature stage. The yellow and orange fleshed fruits are very rich in carotene, which is precursor of Vitamin-A with fair quantities of vitamins B and C (Prem Nath et al., 1973). In modern agriculture, chemical fertilizers constitute the major portion of total cost of seed production. As the cultivation of pumpkin is fast expanding, the growers often come across one or the other problems that limit its fullest expressions of growth and productivity. Hence, these problems could be overcome partially or completely by using different agrochemicals like mineral nutrients and growth regulators. The optimum doses of nitrogen, phosphorus and potassium vary greatly with the length of growing season, fertility status of soil, soil type, cultivar, geographical location and the environmental factors. These factors will have marked effect on the growth and yield parameters of pumpkin.

  1. To find out the effect of organic and inorganic fertilizers on Cucurbita moschata.
  2. To ascertain the proper concentration of this organic and inorganic fertilizer that is required by Cucurbita moschata for it proper growth and best method of application of the fertilizer either ring method or broadcasting method..
  3. To give possible recommendations on what to do for a proper growth and development of Cucurbita moschata.

 

Plant growth regulators, a new generation of agrochemicals, when added in small amounts, modify the natural growth right from seed germination to senescence in crop plants. Among them, the use of GA3, is of considerable interest in different fields of agriculture and horticulture. Studies conducted elsewhere indicated the beneficial effects of chemical fertilizers and growth regulators on crop growth, fruit yield, seed yield and seed quality aspects in cucurbitaceous crops. Therefore, there is a urgent need to generate precise information with regard to requirement of optimum doses of chemical fertilizers and appropriate stage of spray with suitable growth regulators which help in better growth habit, fruiting and seed yield combined with better quality. Considering all these points in view an attempt has been made to find out the effect of chemical fertilizers and organic manure on seed yield and quality of musk pumpkin( Curcubita moschata).

A tropical hybrid of Cucurbita moschata reaches 90 ton.ha-1 grown under drip irrigation and plastic mulch. In another work with Cucurbita moschata, a high yield of 85 ton.ha-1 was obtained for  tropical hybrid C-42 x La Segunda by transplanting and using mulching and row cover in a favorable year, the yield decreased to 43 ton.ha-1 by direct seeding without mulching and row cover in the same year. The previous year (1998) was humid and the yield under the last method was 28 ton.ha-1 . Experimental yields of Cucurbit moschata landraces obtained in the Department of Agriculture and Animal Science of the University of Sonora (DAG) during the summer-fall season under furrow irrigation, changed from 7.9 to 17.8 ton.ha-1, and from 1.2 to 24.6 ton.ha-1 for the winter-spring season. The yield was improved by increasing the plant population reaching 30.3 ton.ha-1 for the summer-fall season of 1988 using 0.33 plants per square meter.

The family Cucurbitaceae consists of about 117 genera and 825 species out of which about 15 different species of Cucurbitaceae are being cultivated in Bangladesh since long time. They have numerous resemblances in gourd development and similarities of root habit. They are also quite similar in their internal anatomy and development (Whitaker & Davis, 1962).The need to use renewable forms of energy and reduce costs of inorganic fertilizer has revived the use of organic fertilizers worldwide. Improvement of environmental conditions and public health are important reasons for advocating increased use of organic materials (Seifritz, 1982; Ojeniyi, 2000; Maritus et al, 2001). They thus, ensure a longer residual effect (Sherma and Mittra, 1991), support better root development and this leads to higher crop yields (Abou el Magd et al., 2005). The study, therefore, seeks to determine the effects of organic manure (poultry manure) and inorganic fertilizer application on the nutrient uptake and yield of Cucurbita moschata.

  • Effect Of Urea And Nitrogen Inorganic Fertilizers On Some Plants

Sustainable crop production requires judicial use of inputs such as fertilizers, the use of inorganic fertilizers has drastically declined following the energy crisis, which has immensely affected most of the developing countries (Hauck, 1981). Urea is one of the synthetic organic fertilizers containing 46% of nitrogen. It is readily soluble and leachable when it is first applied to the soil but when it changes to ammonium it is held by clay and humus in the adsorbed forms that is readily available to plants. Under favorable temperature and moisture conditions urea hydrolyses to ammonium carbonate and then to nitrate within less than a week. The synthesis of ammonium carbonate is dependent on the influence of enzymes produced by numerous soil microorganisms.

Sharma (1993) found that urea, thiourea and citric acid have stimulatory effect on sprouting and growth performance in the stem cuttings of Commiphora wightii and Commiphora agallocha. Ghos and Chattopadhyay (1999) showed effect of foliar application of urea on yield of mango fruits. It was demonstrated that three application of 4% urea resulted in highest fruit yield per tree and maximum fruit weight was recorded from 3% urea. Myers (1998) observed the effect of Nitrogen-fertilizer on Amaranthus species grain yield, yield components and growth and development investigated in three Missouri environments with 5-levels of Nitrogen-fertilizer and 3 cultivars. Averaged across cultivars and environments, N fertilizer act and top rate of 180 kg/ha produced a yield increase of 42% relative to plots receiving no fertilizer. Although amaranth yield is responsive to Nitrogen -application, high rates of Nitrogen fertilizer can negatively affect grain harvest in terms of excessive plant height, increased lodging and delayed crop maturity. Cai et al (2003) found that highest yield and best quality of tobacco were obtained by applying 75 kg/ha nitrogen. Inorganic nitrogenous fertilizer could significantly improve the yield and quality of tobacco, compared with organic nitrogenous fertilizer. Study of Zhang et al., (2002) reveals that the strong immobilization of nitrogen by microorganisms was always followed by a net N mineralization, which was mostly favorable for the growth and development of plant and improved the efficiency of plants for nitrogen fertilizer. Increasing concentration of urea showed enhancing effect in both roots and shoot growth. The root and shoot biomass gradually increased in the control, as well as in the treated plants after every period i.e. 15 days. The initial weight (i.e. 0.04g) of the roots of control plants is least whereas in the soil amended with 0.05g /kg of urea was just the double.


Blazingprojects Mobile App

📚 Over 50,000 Research Thesis
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Thesis-to-Journal Publication
🎓 Undergraduate/Postgraduate Thesis
📥 Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Agricultural educati. 3 min read

Integration of Virtual Reality Technology in Agricultural Education: Enhancing Learn...

The project titled "Integration of Virtual Reality Technology in Agricultural Education: Enhancing Learning and Engagement" aims to explore the potent...

BP
Blazingprojects
Read more →
Agricultural educati. 4 min read

Implementing Virtual Reality Technology in Agricultural Education for Enhanced Learn...

The project titled "Implementing Virtual Reality Technology in Agricultural Education for Enhanced Learning Experiences" aims to explore the integrati...

BP
Blazingprojects
Read more →
Agricultural educati. 2 min read

Assessing the Impact of Virtual Reality Technology on Agricultural Education: A Case...

The research project titled "Assessing the Impact of Virtual Reality Technology on Agricultural Education: A Case Study" aims to explore the potential...

BP
Blazingprojects
Read more →
Agricultural educati. 4 min read

Utilizing Technology for Enhancing Agricultural Education in Rural Schools...

The project titled "Utilizing Technology for Enhancing Agricultural Education in Rural Schools" aims to explore the potential of technology in improvi...

BP
Blazingprojects
Read more →
Agricultural educati. 4 min read

Utilizing Virtual Reality Technology for Enhancing Agricultural Education in Rural C...

The project titled "Utilizing Virtual Reality Technology for Enhancing Agricultural Education in Rural Communities" aims to explore the potential of v...

BP
Blazingprojects
Read more →
Agricultural educati. 2 min read

Utilizing Virtual Reality Technology for Enhanced Agricultural Education and Trainin...

The research project titled "Utilizing Virtual Reality Technology for Enhanced Agricultural Education and Training" aims to explore the potential appl...

BP
Blazingprojects
Read more →
Agricultural educati. 2 min read

Implementing Technology-Based Learning Tools in Agricultural Education Programs for ...

The research project titled "Implementing Technology-Based Learning Tools in Agricultural Education Programs for Enhanced Student Engagement and Learning O...

BP
Blazingprojects
Read more →
Agricultural educati. 3 min read

Utilizing Simulation-Based Learning to Enhance Agricultural Education in Rural Commu...

The project titled "Utilizing Simulation-Based Learning to Enhance Agricultural Education in Rural Communities" aims to investigate the effectiveness ...

BP
Blazingprojects
Read more →
Agricultural educati. 2 min read

Utilizing Virtual Reality Technology for Enhancing Agricultural Education in Rural C...

Overview: The project titled "Utilizing Virtual Reality Technology for Enhancing Agricultural Education in Rural Communities" aims to explore the pot...

BP
Blazingprojects
Read more →
WhatsApp Click here to chat with us