Home / Accounting / CONSTRUCTION OF SHELL AND TUBE HEAT EXCHANGER

CONSTRUCTION OF SHELL AND TUBE HEAT EXCHANGER

 

Table Of Contents


Chapter ONE

1.1 Introduction
1.2 Background of Study
1.3 Problem Statement
1.4 Objective of Study
1.5 Limitation of Study
1.6 Scope of Study
1.7 Significance of Study
1.8 Structure of the Research
1.9 Definition of Terms

Chapter TWO

2.1 Overview of Heat Exchangers
2.2 Types of Heat Exchangers
2.3 Shell and Tube Heat Exchanger Design
2.4 Heat Transfer Mechanisms
2.5 Materials Used in Heat Exchanger Construction
2.6 Heat Exchanger Efficiency
2.7 Heat Exchanger Maintenance
2.8 Applications of Shell and Tube Heat Exchangers
2.9 Recent Developments in Heat Exchanger Technology
2.10 Challenges in Heat Exchanger Design

Chapter THREE

3.1 Research Methodology Overview
3.2 Research Design
3.3 Data Collection Methods
3.4 Sampling Techniques
3.5 Data Analysis Procedures
3.6 Reliability and Validity of Data
3.7 Ethical Considerations
3.8 Limitations of Research Methodology

Chapter FOUR

4.1 Data Analysis and Interpretation
4.2 Comparison of Findings with Existing Literature
4.3 Impact of Variables on Heat Exchanger Performance
4.4 Discussion on Efficiency and Effectiveness
4.5 Recommendations for Improvement
4.6 Future Research Directions
4.7 Practical Implications of the Findings
4.8 Conclusion of Findings

Chapter FIVE

5.1 Summary of Findings
5.2 Conclusion
5.3 Implications for Industry
5.4 Contributions to Knowledge
5.5 Recommendations for Further Research

Thesis Abstract

The aim of this project was to construct shell and tube heat exchanger with fixed boundless. A heat exchanger that would cool 5 x 5 x 10 – 3 kg/s of steam at a calculated heat load of 152 – 395/S was fabricated. The steam is to reach the heat exchanger from a distillation column at a temperature of 300k. The specification of the layout as well as the detailed mechanical design were assumed and also calculated.

It is established that a horizontal heat exchanger with cold water at the shall side and the treated steam at the tube side is adequate for this operation, with the aim of cooling the steam from the distillation column.

The available area obtained from calculation is 1.0m2 and also the overall heat transfer coefficient obtained is 4.10W/M2k. it is also seen that the heat exchanger is satisfactory and consists of five copper tubes of inside diameter 90mm and 5920mm length. The shell inside diameter 810mm and 5.770mm length. The tube and shell heat exchanger has a total length of 5820mm.

The material of construction for the shell side is stainless steel while copper tubes were used for the tubes inside.
The total cost of the heat exchanger was N12,000.


Thesis Overview

INTRODUCTION

In large industrial processes, it is necessary to transfer heat between the system and its surrounding and the device whose primary objective to do it efficiently and effectively is the heat exchanger.
Therefore heat transfer is defined as the rate of exchange of heat between one body (hot) and another cold.
The most important aim in the chemical engineering sector of any plant is to control the flow of thermal energy between two terminals. It there existing temperature gradient of change.
In industrial process, the heat exchange is a very important unit in all the processing industries that their design has been highly developed. Designers of heat exchanger must be constantly aware of the difference between the idealized conditions for and under which basic knowledge was obtained and the real conditions of the mechanical expressions of their design and it’s environment.
The design must satisfy process operational requirement such as availability and maintainability.
Heat transfer or thermo-kinetics is another chapter of the theoretical fundamentals of heat engineering dealing with the processes of heat propagation. In nature and engineering, the most diverce process of heat propagation are observed and also heat flow from bodies (or their section) of a lower temperature. During the process of heat transfer, from one body to another heat flow continues till their temperature became equal be come to equilibrium state of temperature.

MODES OF HEAT TRANSFER

Heat is transferred by conduction, convection and thermal radiation. In practice, heat is usually transmitted by two or all the three modes of heat transfer concurrently.

CONDUCTION

Heat conduction of simply conduction is the transfer of heat by a direct contact between the elementary particles of a body, Viz molecules, atoms, free electrons, when the bodies involved are at rest.
Pure conduction takes place in opaque or non transpired solid.
In goses, conduction occurs due to random motion of the molecules (the diffuse from high concentration region to lower region. In this made of heat transfer, it is very common with metals and thus call for high thermal conductivity. Also the heat transfer per unit area is proportional to normal temperature gradient given as:
Q = dt = (1)
A dx
Fourier postulated an expression for heat transferred by conduction called fouriers law gives by:
Q = KA dt = (2)
Dx
Where Q rate of flow of heat J/S or welts
K = Fourier’s constant
A = Area of heat transfer perpendicular to the direction of heat flow (M2).
dt/dx temperature gradient (0C or K ).
CONVECTION
This involves the transfer of heat from one body to another by the mobile particles of liquid, gas or coarse solids during their relative motion in space. Convection heat transfer can be illustrated by the transfer of heat by heated air from a stove to the upper layers of the room air. Convection consist of forced and natural convection. Forced convection is widely used in chemical processing industries. The expression below shows heat transfer by convection.
Q = KA (Ti – To) = (3)
= hA (Ti – To) = (4)
where h k/x
Q = heat transfer rate J/S or welts
K = Proportionality constant
X = Distance over which heat is transferred (m)
A = Area (M2)
Ti and To = Temperature at different point (0C or K)
h = Convection heat transfer co-efficient (w/m2k)
RADIATION
This is a process of heat transferred by electromagnetic waves through a machines which is transparent to thermal radiation. During this process, a fraction of the thermal energy of a hot body is converted into radiant energy which, when encountering an opaque body again turns partly into heat.
From the second law of thermodynamics, STEFANBOLTZ MANU prop
Proposed that heat is directly proportional to the fourth power of the temperature and the surface area.
Thus given as:
Q = såAT – 4 = (5)
Where s = Stefan – Boltman constant
å = Emissivity surface
T = Absolute temperature (0C or K)
A = Area of heat transfer (M2)
Q = Heat transfer rate J/S or welt

HEAT TRANSFER EQUIPMENT

There are various types of heat exchange equipment generally defined by the function it performs in a chemical industry. Generally, heat exchange is the equipment whose primary objective is to transfer heat energy between two fluids. These equipment are classified into three categories mainly:-
(a) Regenerators
(b) Open type heat exchangers and
(c) Closed type bread exchanger or recuperations

a. REGENERATORS

These are heat exchangers in which the hot and cold fluid flow through the same space alternatively with a little physical mixing as possible occurring between the two streams. The amount of heat transferred depends on the fluid and flow properties of the fluid streams as well as the geometry and thermal properties of the surface.

b. OPEN TYPE HEAT EXCHANGERS

These are devices where by fluid stream flow into an open chamber and there the complete mixing occurs. Hot and cold fluid enter the exchanger separately and will at the other end leaves as single fluid stream.

c. RECUPERATORS OR CLOSED TYPE HEAT EXCHANGERS

They are those in which the heat transfer occurs between the two fluid stream that do not physical contact each other. The fluid streams involved are separated from one another by a tube wall or a pipe. Heat transfer occurs by convection from the hot fluid to the solid surface, by conduction through the solid surface and then by convection through solid surface to the cooler fluid.
Another classification is based on relative flow direction of the two fluid streams. They include:-
i. Parallel Flow: When the fluid stream flow in the same direction.
ii. Counter Current Flow: The fluid streams flow in opposite direction.
iii. Cross Flow: If the fluid stream flow at right angle to one another.
The other classification is based on tube construction:-
i. Double – pipe heat exchanger
ii. Shell and tube heat exchanger
iii. Extended – surface exchangers
iv. Spiral plate exchanger
v. Graphic block heat exchangers
vi. Scrap surface exchanger.


Blazingprojects Mobile App

📚 Over 50,000 Research Thesis
📱 100% Offline: No internet needed
📝 Over 98 Departments
🔍 Thesis-to-Journal Publication
🎓 Undergraduate/Postgraduate Thesis
📥 Instant Whatsapp/Email Delivery

Blazingprojects App

Related Research

Accounting. 4 min read

Analysis of the Impact of International Financial Reporting Standards (IFRS) on Fina...

...

BP
Blazingprojects
Read more →
Accounting. 3 min read

Analyzing the Impact of Artificial Intelligence on Financial Reporting in the Accoun...

...

BP
Blazingprojects
Read more →
Accounting. 3 min read

Analyzing the Impact of Artificial Intelligence on Financial Statement Analysis in A...

...

BP
Blazingprojects
Read more →
Accounting. 4 min read

Analyzing the Impact of Blockchain Technology on Financial Reporting in the Accounti...

...

BP
Blazingprojects
Read more →
Accounting. 3 min read

Analysis of the Impact of Artificial Intelligence on Financial Reporting in Accounti...

...

BP
Blazingprojects
Read more →
Accounting. 3 min read

Exploring the impact of digital transformation on financial reporting in the account...

...

BP
Blazingprojects
Read more →
Accounting. 2 min read

An analysis of the impact of digital technologies on financial reporting practices i...

...

BP
Blazingprojects
Read more →
Accounting. 3 min read

Analysis of Financial Performance of Small and Medium Enterprises in the Retail Sect...

...

BP
Blazingprojects
Read more →
Accounting. 3 min read

Application of Artificial Intelligence in Fraud Detection in Accounting...

...

BP
Blazingprojects
Read more →
WhatsApp Click here to chat with us